Natural Language Processing
ETH Zürich, Spring 2021: Course catalog
Course Description
This course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language processing systems.
The objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.
Grading
Marks for the course will be determined by the following formula:
* 70% Final Exam
* 30% Course Project/Assignment
Lectures: Wed 12-14h Zoom (recurring link sent at start of semester). Recordings can be found in the (password protected) course Polybox.
Discussion Sections: Thurs 17-18h; Fri 11-12h Zoom (link to be distributed day of section).
Textbooks: Introduction to Natural Language Processing (Eisenstein)
Deep Learning (Goodfellow, Bengio and Courville)
News
18.02 Class website is online!
18.02 We are using piazza as our discussion forum. Please enroll here.
24.02 First lecture.
03.03 Project guidelines released.
04.03 First discussion section.
31.03 Project proposals due.
01.04 Assignment Part 1 released.
21.05 Assignment Part 2 released.
Syllabus
Weekly Exercises
We will release exercises every week that cover material in the next lecture (e.g., exercises released on Sunday night cover material in the following Wednesday’s lecture). These exercises are intended to give you the opportunity to test your understanding of the course material. They are not for a grade, nor will the TAs be able to offer individual feedback on your solutions. If you have questions regarding the exercises, we recommend bringing them to the discussion section that week as the TAs will walk through related problems. Solutions will be released in the following week.
Course Project/Assignment
Every student has the option of completing either a research project or a structured assignment. This work will be worth 30% of your final mark. Both will be due on July 15th.
The research project is an open-ended project where students reimplement an existing research paper or perform novel research if they are so inclined. Projects can be completed in groups of up to 4; feel free to use Piazza to reach out to other students in the course. We will require you to write a 1-page project proposal where we will give you feedback on the idea (due March 31st). Submission can be done on the course Moodle page (one submission per team please). We will also require a progress report (due May 31st). Please send both the progress and final reports (including your recorded presentation) directly to your assigned TA. More details can be found in the project guidelines.
In the assignment, some of the questions will be more theoretical and resemble the questions you will see on the final exam. However, there will also be a substantial coding portion, which would not look like the exam questions. For instance, we may ask you to implement a recurrent neural dependency parser. Assignments must be completed individually, although you may discuss the assignment with other students. If you choose to do so, you must specify with whom you collaborated in your submission (see template below). We will release the assignment in two waves, corresponding to when course material is covered. The second portion of the assignment will be released ~May 20th. Submission: Upload a zip file (with a single pdf containing all written answers to both parts of the assignment and the colab notebooks) to the assignment submission task on Moodle. For the writeup portion, we will only process a single pdf: if you include multiple pdfs in your submission, only one will be graded.
Materials
- Project Guidelines
- Assignment Part 1
- Assignment Part 2
- Assignment Submission Template
- Exam Topics
- Practice Exam
- Practice Exam Solutions
Contact
You can ask questions on piazza. Please post questions there, so others can see them and share in the discussion. If you have questions which are not of general interest, please don’t hesitate to contact us directly, i.e., post a private note on piazza or email Ryan with Clara cc-ed.