
Efficient Computation of Expectations under Spanning Tree Distributions

Ran Zmigrod , Tim Vieira , Ryan Cotterell ,

University of Cambridge Johns Hopkins University ETH Zürich
rz279@cam.ac.uk tim.f.vieira@gmail.com

ryan.cotterell@inf.ethz.ch

Abstract

We give a general framework for inference
in spanning tree models. We propose uni-
fied algorithms for the important cases of
first-order expectations and second-order ex-
pectations in edge-factored, non-projective
spanning-tree models. Our algorithms ex-
ploit a fundamental connection between gra-
dients and expectations, which allows us
to derive efficient algorithms. These algo-
rithms are easy to implement with or with-
out automatic differentiation software. We
motivate the development of our framework
with several cautionary tales of previous re-
search, which has developed numerous ineffi-
cient algorithms for computing expectations
and their gradients. We demonstrate how
our framework efficiently computes several
quantities with known algorithms, including
the expected attachment score, entropy, and
generalized expectation criteria. As a bonus,
we give algorithms for quantities that are
missing in the literature, including the KL di-
vergence. In all cases, our approach matches
the efficiency of existing algorithms and, in
several cases, reduces the runtime complex-
ity by a factor of the sentence length. We
validate the implementation of our frame-
work through runtime experiments. We find
our algorithms are up to 15 and 9 times faster
than previous algorithms for computing the
Shannon entropy and the gradient of the gen-
eralized expectation objective, respectively.

1 Introduction

Dependency trees are a fundamental combinato-
rial structure in natural language processing. It
follows that probability models over dependency
trees are an important object of study. In terms
of graph theory, one can view a (non-projective)
dependency tree as an arborescence (commonly

Equal contribution

known as a spanning tree) of a graph. To build a
dependency parser, we define a graph where the
nodes are the tokens of the sentence, and the edges
are possible dependency relations between the to-
kens. The edge weights are defined by a model,
which is learned from data. In this paper, we focus
on edge-factored models where the probability of
a dependency tree is proportional to the product
the weights of its edges. As there are exponentially
many trees in the length of the sentence, we require
clever algorithms for finding the normalization con-
stant. Fortunately, the normalization constant for
edge-factored models is efficient to compute via to
the celebrated matrix–tree theorem.

The matrix–tree theorem (Kirchhoff, 1847)—
more specifically, its counterpart for directed
graphs (Tutte, 1984)—appeared before the NLP
community in an onslaught of contemporaneous pa-
pers (Koo et al., 2007; McDonald and Satta, 2007;
Smith and Smith, 2007) that leverage the classic
result to efficiently compute the normalization con-
stant of a distribution over trees. The result is still
used in more recent work (Ma and Hovy, 2017; Liu
and Lapata, 2018). We build upon this tradition
through a framework for computing expectations
of a rich family of functions under a distribution
over trees. Expectations appear in all aspects of
the probabilistic modeling process: training, model
validation, and prediction. Therefore, developing
such a framework is key to accelerating progress in
probabilistic modeling of trees.

Our framework is motivated by the lack of a
unified approach for computing expectations over
spanning trees in the literature. We believe this
gap has resulted in the publication of numerous
inefficient algorithms. We motivate the importance
of developing such a framework by highlighting
the following cautionary tales.
• McDonald and Satta (2007) proposed an ineffi-

cient O
(
N5
)

algorithm for computing feature
expectations, which was much slower than the

rz279@cam.ac.uk
tim.f.vieira@gmail.com
ryan.cotterell@inf.ethz.ch


O
(
N3
)

algorithm obtained by Koo et al. (2007);
Smith and Smith (2007). The authors subse-
quently revised their paper.

• Smith and Eisner (2007) proposed an O
(
N4
)

algorithm for computing entropy. Later, Martins
et al. (2010) gave anO

(
N3
)

method for entropy,
but not its gradient. Our framework recovers
Martins et al. (2010)’s algorithm, and addition-
ally provides the gradient of entropy in O

(
N3
)
.

• Druck et al. (2009) proposed an O
(
N5
)

algo-
rithm for evaluating the gradient of the gener-
alized expectation (GE) criterion (McCallum
et al., 2007). The runtime bottleneck of their ap-
proach is the evaluation of a covariance matrix,
which Druck and Smith (2009) later improved
to O

(
N4
)
. We show that the gradient of the GE

criterion can be evaluated in O
(
N3
)
.

We summarize our main results below:

• Unified Framework: We develop an algorith-
mic framework for calculating expectations over
spanning arborescences. We give precise math-
ematical assumptions on the types of functions
that are supported. We provide efficient algo-
rithms that piggyback on automatic differentia-
tion techniques, as our framework is rooted in a
deep connection between expectations and gra-
dients (Darwiche, 2003; Li and Eisner, 2009).

• Improvements to existing approaches: We
give asymptotically faster algorithms where sev-
eral prior algorithms were known.

• Efficient algorithms for new quantities: We
demonstrate how our framework calculates sev-
eral new quantities, such as the Kullback–Leibler
divergence, which (to our knowledge) had no
prior algorithm in the literature.

• Practicality: We present practical speed-ups in
the calculation of entropy compared to Smith
and Eisner (2007). We observe speed-ups in
the range of 4.1 and 15.1 in five languages de-
pending on the typical sentence length. We also
demonstrate a 9 times speed-up for evaluating
the gradient of the GE objective compared to
Druck and Smith (2009).

• Simplicity: Our algorithms are simple to
implement—requiring only a few lines of
PyTorch code (Paszke et al., 2019). We
have released a reference implementation at
the following URL https://github.com/
rycolab/tree_expectations.

2 Distributions over Trees

We consider the distribution over trees in weighted
directed graphs with a designated root node. A
(rooted, weighted, and directed) graph is given
by G = (N , E , ρ). N = {1, . . . , N} ∪ {ρ} is a
set of N+1 nodes where ρ is a designated root
node. E is a set of weighted edges where each edge
(i

wij−−→ j)∈E is a pair of distinct nodes such that
the source node i∈N points to a destination node
j ∈N with an edge weight wij ∈ R. We assume—
without loss of generality—that the root node ρ
has no incoming edges. Furthermore, we assume
only one edge can exist between two nodes. We
consider the multi-graph case in §2.2.

In natural language processing applications,
these weights are typically parametric functions,
such as log-linear models (McDonald et al., 2005b)
or neural networks (Dozat and Manning, 2017; Ma
and Hovy, 2017), which are learned from data.

A tree1 d of a graph G is a set of N edges such
that all non-root nodes j have exactly one incoming
edge and the root node ρ has at least one outgoing
edge. Furthermore, a tree does not contain any
cycles. We denote the set of all trees in a graph by
D and assume that |D| > 0 (this is not necessarily
true for all graphs).

The weight of a tree d∈D is defined as:

w(d)
def
=
∏

(i→ j)∈d

wij (1)

Normalizing the weight of each tree yields a prob-
ability distribution:

p(d)
def
=

w(d)

Z
(2)

where the normalization constant is defined as

Z
def
=
∑
d∈D

w(d) =
∑
d∈D

∏
(i→ j)∈d

wij (3)

Of course, for (2) to be a proper distribution, we
require wij≥0 for all (i→ j)∈E , and Z>0.

2.1 The Matrix–Tree Theorem
The normalization constant Z involves a sum over
D, which can grow exponentially large with N .
Fortunately, there is sufficient structure in the com-
putation of Z that it can be evaluated in O

(
N3
)

time. The Matrix–Tree Theorem (MTT) (Tutte,
1The more precise graph-theoretic term is arborescence.

https://github.com/rycolab/tree_expectations
https://github.com/rycolab/tree_expectations


1984; Kirchhoff, 1847) establishes a connection
between Z and the determinant of the Laplacian
matrix, L ∈ RN×N . For all i, j ∈ Nr{ρ},

Lij
def
=


∑

i′∈Nr{j}
wi′j if i = j

−wij otherwise
(4)

Theorem 1 (Matrix–Tree Theorem; Tutte (1984, p.
140)). For any graph,

Z = |L| (5)

Furthermore, the normalization constant can be
computed in O

(
N3
)

time.2

2.2 Dependency parsing & the Laplacian zoo
Graph-based dependency parsing can be encoded
as follows. For each sentence of length N , we cre-
ate a graph G = (N , E , ρ) where each non-root
node represents a token of the sentence, and ρ rep-
resents a special root symbol of the sentence. Each
edge (i→ j) in the graph represents a possible de-
pendency relation between head word i and mod-
ifier word j. Fig. 1 gives an example dependency
tree. In the remainder of this section, we give sev-
eral variations on the Laplacian matrix that encode
different sets of valid trees.3

In many cases of dependency parsing, we want
ρ to have exactly one outgoing edge. This is moti-
vated by linguistic theory, where the root of a sen-
tence should be a token in the sentence rather than
a special root symbol (Tesnière, 1959). There are
exceptions to this, such as parsing Twitter (Kong
et al., 2014) and parsing specific languages (e.g.,
The Prague Treebank (Bejček et al., 2013)). We
call these multi-root trees4 and are represented by
the set D as described earlier. Therefore, the nor-
malization constant over all multi-root trees can be
computed by a direct application of Theorem 1.

However, in most dependency parsing corpora,
only one edge may emanate from the root (Nivre
et al., 2018; Zmigrod et al., 2020). Thus, we con-
sider the set of single-rooted trees, denoted D(1).
Koo et al. (2007) adapts Theorem 1 to efficiently
2For simplicity, we assume that the runtime of matrix deter-
minants is O

(
N3
)
. However, we would be remiss if we did

not mention that algorithms exist to compute the determinant
more efficiently (Dumas and Pan, 2016).

3The reader may want to skip this section on their first reading.
4We follow the conventions of Koo et al. (2007) and say
“single-root” and “multi-root” when we technically mean
the number of outgoing edges from the root ρ, and not the
number of root nodes in a tree, which is always one.

We compute expectations very efficiently

root

nsubj
dobj

advmod

advmod

Figure 1: Example of a dependency tree

compute Z for the set D(1) with the root-weighted
Laplacian,5 L̂ ∈ RN×N

L̂ij =


wρj if i = 1∑
i′∈Nr{ρ,j}

wi′j if i = j

−wij otherwise

(6)

Proposition 1. For any graph, the normalization
constant over all single-rooted trees is given by the
determinant of the root-weighted Laplacian (Koo
et al., 2007, Prop. 1)

Z = |L̂| (7)

Furthermore, the normalization constant for single-
rooted trees can be computed in O

(
N3
)

time.

Labeled trees. To encode labeled dependency re-
lations in our set of trees, we simply augment edges
with labels—resulting in a multi-graph in which
multiple edges may exist between pairs of nodes.

Now, edges take the form (i
y/wijy−−−−→j) where i and

j are the source and destination nodes as before,
y ∈ Y is the label, and wijy is their weight.

Proposition 2. For any multi-graph, the normal-
ization constant for multi-root or single-rooted
trees can be calculated using Theorem 1 or Propo-
sition 1 (respectively) with the edge weights,

wij =
∑
y∈Y

wijy (8)

Furthermore, the normalization constant can be
computed in O

(
N3 + |Y|N2

)
time.6

5The choice to replace row 1 by the root edges is done by
convention, we can replace any row in the construction of L̂.

6The algorithms given in later sections will not provide full
details for the labeled case due to space constraints, but we
assure the reader that our algorithms can be straightforwardly
generalized to the labeled setting.



Summary. We give common settings in which
the MTT can be adapted to efficiently compute Z
for different sets of trees. The choice is dependent
upon the task of interest, and one must be careful
to choose the correct Laplacian configuration. The
results we present in this paper are modular in the
specific choice of Laplacian. For the remainder of
this paper, we assume the unlabeled tree setting
and will refer to the set of trees as simply D and
our choice of Laplacian as L.

3 Expectations

In this section, we characterize the family of expec-
tations that our framework supports. Our frame-
work is an extension of Li and Eisner (2009) to
distributions over spanning trees. In contrast, their
framework considers expectations over distribu-
tions that can be factored as B-hypergraphs (Gallo
et al., 1993). Our distributions over trees cannot be
cast as polynomial-size B-hypergraphs. Another
important distinction between our framework and
that of Li and Eisner (2009) is that we do not use
the semiring abstraction as it is algebraically too
weak to compute the determinant efficiently.7

The expected value of a function f : D 7→ RF
is defined as follows

Ed[f(d)]
def
=
∑
d∈D

p(d)f(d) (9)

Without any assumptions on f , computing (9) is
intractable.8 In the remainder of this section, we
will characterize a class of functions f whose ex-
pectations can be efficiently computed.

The first type of functions we consider are func-
tions that are additively decomposable along the
7In fact, Jerrum and Snir (1982) proved that the partition func-
tion for spanning trees requires an exponential number of
additions and multiplications in the semiring model of compu-
tation (i.e., assuming that subtraction is not allowed). Interest-
ingly, division is not required, but algorithms for division-free
determinant computation run in O

(
N4
)

(Kaltofen, 1992).
An excellent overview of the power of subtraction in the
context of dynamic programming is given in Miklós (2019,
Ch. 3). It would appear as if commutative rings would make
a good level of abstraction as they admit efficient determinant
computation. Interestingly, this means that we cannot use
the MTT in the max-product semiring to (efficiently) find
the maximum weight tree because max does not have an in-
verse. Fortunately, there exist O

(
N2
)

algorithms to find the
maximum weight tree for both the single-root and multi-root
settings (Zmigrod et al., 2020; Gabow and Tarjan, 1984).

8Of course, one could use sampling methods, such as Monte
Carlo, to approximate (9). Sampling methods may be effi-
cient if the variance of f under p is not too large.

edges of the tree. Formally, a function r: D 7→ RR
is additively decomposable if it can be written as

r(d) =
∑

(i→ j)∈d

rij (10)

where we abuse notation slightly by for any func-
tion r: D 7→ RR, we consider the edge function rij
as a vector of edge values. An example of an addi-
tively decomposable function is r(d) = − log p(d)
whose expectation gives the Shannon entropy.9

Other first-order expectations include the expected
attachment score and the Kullback–Leibler diver-
gence. We demonstrate how to compute these in
our framework in and §6.1 and §6.3, respectively.

The second type of functions we consider are
functions that are second-order additively de-
composable along the edges of the tree. Formally,
a function r: D 7→ RR is second-order additively
decomposable if it can be written as the outer
product of two additively decomposable functions,
r: D 7→ RR and s: D 7→ RS

t(d) = r(d)s(d)> (11)

Thus, t(d) ∈ RR×S is generally a matrix.
An example of such a function is the gradient

of entropy (see §6.2) or the GE objective (McCal-
lum et al., 2007) (see §6.4) with respect to the
edge weights. Another example of a second-order
additively decomposable function is the covari-
ance matrix. Given two feature functions r: D 7→
RR and s: D 7→ RS , their covariance matrix is
Ed
[
r(d)s(d)>

]
− Ed[r(d)]Ed[s(d)]>. Thus, it is

second-order additively decomposable function as
long as r(d) and s(d) are additively decomposable.

One family of functions which can be computed
efficiently but we will not explore here are those
who are multiplicatively decomposable over the
edges. A function q: D 7→ RQ is multiplicatively
decomposable if it can be written as

q(d) =
∏

(i→ j)∈d

qij (12)

where the product of qij is an element-wise vector
product. These functions form a family that we will
call zeroth-order expectations and can be computed
with a constant number of calls to MTT (usually
9Proof: − log p(d)= − log( 1

Z

∏
(i→ j)∈d wij)

= log Z−
∑

(i→ j)∈d logwij .
⇒ rij =

1
N

log Z− logwij .



two or three). Examples of these include the Rényi
entropy and `p-norms.10

4 Connecting gradients and expectations

In this section, we build upon a fundamental con-
nection between gradients and expectations (Dar-
wiche, 2003; Li and Eisner, 2009). This connection
allows us to build on work in automatic differentia-
tion to obtain efficient gradient algorithms. While
the propositions in this section are inspired from
past work, we believe that the presentation and
proofs of these propositions have previously not
been clearly presented.11 We find it convenient
to work with unnormalized expectations, or totals
(for short). We denote the total of a function f
as f def

=
∑

d∈D w(d)f(d). We recover the expec-
tation with Ep[f ] = f/Z. We note that totals (on
their own) may be of interest in some applications
(Vieira and Eisner, 2017, Section 5.3).

The first-order case. Specifically, the partial
derivative ∂Z

∂wij
is useful for determining the to-

tal weight of trees which include the edge (i→ j),

w̃ij
def
=
∑
d∈Dij

w(d) (13)

where Dij
def
= {d ∈ D | (i→ j) ∈ d}. Further-

more, p((i→ j) ∈ d) = w̃ij/Z =
wij
Z

∂Z
∂wij

.12

Proposition 3. For any edge (i→ j),

w̃ij =
∂Z

∂wij
wij (14)

Proof.

w̃ij =
∑
d∈Dij

w(d)

=
∑
d∈Dij

∏
(i′→ j′)∈d

wi′j′

10The `k norm of the distribution p often denoted as ‖p‖k
def
=(∑

d∈D p(d)
k
)1/k

for k ≥ 0. It is computable from
a zeroth-order expectation because it can be written as
(Z

(k)

Zk
)1/k where Z(k) =

∑
d∈D w(d)

k =
∑

(i→ j)∈d wij
k,

which is clearly a zeroth-order expectation. Similarly,
the Rényi entropy of order α ≥ 0 with α 6= 1 is
Hα(p)

def
= 1

1−α log
(∑

d∈D p(d)
α
)
= 1

1−α log
(

Z(α)

Zα

)
.

11Li and Eisner (2009, Section 5.1) provides a similar deriva-
tion to Proposition 3 and Proposition 4 for hypergraphs.

12Some authors (e.g., Wainwright and Jordan (2008)) prefer to
work with an exponentiated representation wij = exp(θij)
so that ∇θij log Z = p((i→ j) ∈ d). This avoids an ex-
plicit division by Z, and multiplication by wij as these oper-
ations happens by virtue of the chain rule.

= wij
∑
d∈Dij

∏
(i′→ j′)∈
dr{(i→ j)}

wi′j′

= wij
∂

∂wij

∑
d∈D

∏
(i′→ j′)∈d

wi′j′

=
∂Z

∂wij
wij

Proposition 4 will establish a connection be-
tween the unnormalized expectation r and ∇Z.

Proposition 4. For any additively decomposable
function r: D 7→ RR, the total r can be computed
using a gradient–vector product

r =
∑

(i→ j)∈Ẽ

wijrij (15)

Proof.

r =
∑
d∈D

w(d)r(d)

=
∑
d∈D

w(d)
∑

(i→ j)∈d

rij

=
∑
d∈D

∑
(i→ j)∈d

w(d)rij

=
∑

(i→ j)∈E

∑
d∈Dij

w(d)rij

=
∑

(i→ j)∈Ẽ

wijrij

The second-order case. We can similarly use
∂2Z

∂wij ∂wkl
to determine the total weight of trees

which include both (i→ j) and (k→ l) with
(i→ j) 6= (k→ l)13

w̃ij,kl
def
=

∑
d∈Dij,kl

w(d) (16)

where Dij,kl
def
= {d∈D | (i→ j)∈d, (k→ l)∈d}.

Furthermore, w̃ij,klZ =p((i→ j)∈d, (k→ l)∈d).
Proposition 5. For any pair of edges (i→ j) and
(k→ l) such that (i→ j) 6= (k→ l),

w̃ij,kl =
∂2Z

∂wij ∂wkl
wijwkl (17)

13As each edge can only appear once in a tree, w̃ij,ij = 0.



Proof.

w̃ij,kl =
∑

d∈Dij,kl

w(d)

=
∑

d∈Dij,kl

∏
(k′→ l′)∈d

wk′l′

= wijwkl
∂2

∂wij∂wkl

∑
d∈D

∏
(i′→ j′)∈d

wi′j′

=
∂2Z

∂wij ∂wkl
wijwkl

Proposition 6 will relate ∇2Z to ∇r. This will
be used in Proposition 7 to establish a connection
between the total t and ∇2Z, and additionally es-
tablishes a connection between t and ∇r.
Proposition 6. For any additively decomposable
function r: D 7→ RR that does not depend on w,14

and edge (i→ j) ∈ E ,

wij
∂r

∂wij
= w̃ijrij +

∑
(k→ l)∈E

w̃ij,klrkl (18)

Proof.

wij
∂r

∂wij

= wij
∂

∂wij

 ∑
(k→ l)∈E

∂Z

∂wkl
wklrkl


= wij

∂Z

∂wij
rij + wij

∑
(k→ l)∈E

∂2Z

∂wij∂wkl
wklrkl

= w̃ijrij +
∑

(k→ l)∈E

w̃ij,klrkl

Proposition 7. For any second-order additively
decomposable function t: D 7→ RR×S , which is
expressed as the outer product of additively decom-
posable functions, r: D 7→ RR and s: D 7→ RS ,
t(d) = r(d)s(d)>, where r does not depend on
w, the total t can be computed using a Jacobian–
matrix product

t =
∑

(i→ j)∈E

∂r

∂wij
wijsij

> (19)

or a Hessian–matrix product

t =
∑

(i→ j)∈Ẽ

wijrijsij
> +

∑
(k→ l)∈E

w̃ij,klrijskl
> (20)

14More precisely, ∂r(d)
∂wij

= 0 for all d ∈ D and (i→ j) ∈ E .

Proof. We first prove (19)

t

=
∑
d∈D

w(d)r(d)s(d)>

=
∑
d∈D

w(d)r(d)
∑

(i→ j)∈d

sij
>

=
∑
d∈D

∑
(i→ j)∈d

w(d)r(d)sij
>

=
∑

(i→ j)∈E

∑
d∈Dij

w(d)r(d)sij
>

=
∑

(i→ j)∈E

wij
∂

∂wij

(∑
d∈D

w(d)r(d)

)
sij
>

=
∑

(i→ j)∈E

wij
∂r

∂wij
sij
>

Then (20) immediately follows by substituting (18)
into (19) and expanding the summation.

Remark. There is a simple recipe to compute
∇rn for each n = 1, . . . , R. First, some notation;
let
−→
1ij be a vector over E with a 1 in dimension

(i→ j), and zeros elsewhere. By plugging [rij ]n
and sij = 1

wij

−→
1ij into (19), we can compute tn =

∇rn.15 However, if r depends on w, we must add
the following first-order term, which is due to the
product rule

∇rn = tn +
∑

(i→ j)∈Ẽ

wij∇[rij ]n︸ ︷︷ ︸
first-order term

(21)

We provide the details for computing the gradients
of two first-order quantities, Shannon Entropy and
the KL divergence, using this recipe in §6.2 and
§6.3, respectively.

5 Algorithms

Having reduced the computation of r and t to find-
ing derivatives of Z in §4, we now describe effi-
cient algorithms that exploit this connection. The
main algorithmic ideas used in this section are
based on automatic differentiation (AD) techniques
(Griewank and Walther, 2008). These are general-
purpose techniques for efficiently evaluating gradi-
ents given algorithms that evaluate the functions. In
our setting, the algorithm in question is an efficient
procedure for evaluating Z, such as the procedure
15Note that when wij = 0, we can set sij = 0.



we described in §2.1. While we provide derivatives
§5.1 in our algorithms, these can also be evaluated
using any AD library, such as JAX (Bradbury et al.,
2018), PyTorch (our choice) (Paszke et al., 2019),
or TensorFlow (Abadi et al., 2015).

Proposition 4 is realized as T1 in Fig. 2 and (19)
and (20) are realized as Tv2 and Th2 in Fig. 3 respec-
tively. We provide the runtime complexity of each
step in the algorithms. These will be discussed in
more detail in §5.2.

5.1 Derivatives of Z
All three algorithms rely on first- or second-order
derivatives of Z. Since Z = |L|, we can express its
gradient via Jacobi’s formula and an application of
the chain rule16

∂Z

∂wij
= Z

∑
(i′,j′)∈Lij

Bi′j′L
′
i′j′,ij (22)

where
B = L−> (23)

is the transpose of L−1, L′i′j′,ij =
∂Li′j′
∂wij

, and Lij
is the set of pairs where (i′, j′) ∈ Lij means that

L′i′j′,ij 6= 0. We define Bρj′
def
= 0 for any j′ ∈ N .

Koo et al. (2007) show that for any i and j, |Lij | ≤
2 in the unlabeled case, indeed, L′i′j′,ij is given by

L′i′j′,ij =


1 if i′ ∈ {1, j}, j′ = j

−1 if i′ = i, j′ = j

0 otherwise
(24)

Their result holds for any Laplacian encoding we
gave in §2.2.17

The second derivative of Z can be evaluated as
follows18

∂2Z

∂wij∂wkl
=
∑

(i′,j′)∈Lij
(k′,l′)∈Lkl

L′i′j′,ij
∂2Z

∂Li′j′∂Lk′l′
L′k′l′,kl

(25)
16The derivative of |L| can also be given using the matrix

adjugate, ∇Z = adj(L)>. There are benefits to using the
adjugate as it is more numerically stable and equally efficient
(Stewart, 1998). In fact, any algorithm that computes the
determinant can be algorithmically differentiated to obtain
an algorithm for the adjugate.

17We have that |Lij | ≤ 2|Y| in the labeled case.
18We provide a derivation in App. A. Druck and Smith (2009)

give a similar derivation for the Hessian, which we have
generalized to any second-order quantity.

1: def T1
(
w: E 7→ R, r: E 7→ RR

)
:

2: . Compute first-order total; requires O
(
N3R′

)
time, O

(
N2+R

)
space.

3: Compute all w̃ij via (14) and (22) inO
(
N3
)

4: r ←
∑

(i→ j)∈Ẽ

wijrij . O
(
N2R′

)
5: return r

Figure 2: Algorithm for first-order totals.

where

∂2Z

∂Li′j′∂Lk′l′
= Z

(
Bi′j′Bk′l′ − Bi′l′Bk′j′

)
(26)

Note that (25) also contains a term with ∇2L as it
is derived from the product rule. Since L is a linear
construction, its second derivative is zero and so
we can drop this term.

5.2 Complexity Analysis
The efficiency of our approach is rooted in the fol-
lowing result from automatic differentiation, which
relates the cost of gradient evaluation to the cost of
function evaluation. Given a function f , we denote
the number of differentiable elementary operations
(e.g., +, *, /, -, cos, pow) of f by Cost{f}.
Theorem 2 (Cheap Jacobian–vector Products).
For any function f : RK 7→ RM and any vector
v ∈ RM , we can evaluate (∇f(x))>v ∈ RK
with cost satisfying the following bound via reverse-
mode AD (Griewank and Walther, 2008, Page 44),

Cost
{
(∇f(x))>v

}
≤ 4·Cost{f} (27)

Thus, O
(
Cost

{
(∇f(x))>v

})
= O(Cost{f}).

As a special (and common) case, Theorem 2
implies a cheap gradient principle: the cost of
evaluating the gradient of a function of one output
(M = 1) is as fast as evaluating the function itself.

Algorithm T1. The cheap gradient principle tells
us that ∇Z can be evaluated as quickly as Z itself,
and that numerically accurate procedures for Z give
rise to similarly accurate procedures for ∇Z. Addi-
tionally, many widely used software libraries can
do this work for us, such as JAX, PyTorch, and Ten-
sorFlow. The runtime of evaluating Z is dominated
by evaluating the determinant of the Laplacian ma-
trix. Therefore, we can find both Z and ∇Z in the
same complexity: O

(
N3
)
. Line 4 of Fig. 2 is a

sum over N2 scalar–vector multiplications of size



R, this suggests a runtime of O
(
N2R

)
. However,

in many applications, R is a sparse function. There-
fore, we find it useful to consider the complexities
of our algorithms in terms of the size R, and the
maximum density R′ of each rij . We can then
evaluate Line 4 in O

(
N2R′

)
, leading to an over-

all runtime for T1 of O
(
N3 +N2R′

)
. The call

to Z uses O
(
N2
)

space to store the Laplacian ma-
trix. Computing the gradient of Z similarly takes
O
(
N2
)

to store.Since storing r takes O(R) space,
T1 has a space complexity of O

(
N2 +R

)
.

Algorithm Tv2 . Second-order quantities (t), ap-
pear to require ∇2Z and so do not directly fit the
conditions of the cheap gradient principle: the Hes-
sian (∇2Z) is the Jacobian of the gradient. The ap-
proach of Tv2 to work around this is to make several
calls to Theorem 2 for each element of r. In this
case, the function in question is (11), which has out-
put dimensionality R. Computing ∇r can thus be
evaluated with R calls to reverse-mode AD, requir-
ing O

(
R(N3 +N2R′)

)
time. We can somewhat

support fast accumulation of S′-sparse S in the
summation of Tv2 (Line 6). Unfortunately, ∂r

∂wij
will

generally be dense, so the cost of the outer prod-
uct on Line 6 is O(RS′). Thus, Tv2 has an overall
runtime of O

(
R(N3 +N2R′) +N2RS′

)
.19 Ad-

ditionally, Tv2 requires O
(
N2R+RS

)
of space

because O
(
N2R

)
is needed to compute and store

the Jacobian of r and t has size O(RS).

Algorithm Th2 . The downside of Tv2 is that no
work is shared between the R evaluations of the
loop on Line 3. For our computation of Z, it turns
out that substantial work can be shared among eval-
uations. Specifically, ∇2Z only relies on the in-
verse of the Laplacian matrix, as seen in (26), lead-
ing to an alternative algorithm for second-order
quantities, Th2 . This is essentially the same ob-
servation made in Druck and Smith (2009). Ex-
ploiting this allows us to compute∇2Z in O

(
N4
)

time. Note that this runtime is only achievable due
to the sparsity of ∇L. The accumulation compo-
nent (Line 12) of Th2 can be done in O

(
N4R′S′

)
.

Considering space complexity, while not preva-
lent in our pseudocode, a benefit of Th2 is that we
do not need to materialize the Hessian of Z as it
only makes use of the inverse of the Laplacian ma-
trix. Therefore, we only needO

(
N2
)

space for the
Laplacian inverse and O(RS) space for t. Conse-

19If S<R, we can change the order of Tv2 to compute t> in
O
(
S(N3+N2S′)+N2R′S

)
.

1: def Tv2
(
w: E 7→ R, r: E 7→ RR, s: E 7→ RS

)
:

2: . Compute second-order total with gradient-vector
products; requires O(R(N3+N2R′+N2S′))
time, O

(
N2R+RS

)
space.

3: for n = 1 . . . R : . O
(
R(N3 +N2R′)

)
4: Compute ∇rn using reverse-mode AD

on [T1(w, r)]n

5: . Apply (19); requires O
(
N2RS′

)
6: return

∑
(i→ j)∈E

∂r
∂wij

wijsij
>

7: def Th2
(
w: E 7→ R, r: E 7→ RR, s: E 7→ RS

)
:

8: . Compute second-order total by materializing Hes-
sian; requires O

(
N4R′S′

)
time, O

(
N2+RS

)
space.

9: Compute all w̃ij using (14) and (22)
10: Compute all w̃ij,kl using (17) and (25)
11: . Apply (20); requires O

(
N4R′S′

)
12: return

∑
(i→ j)∈Ẽ

wijrijsij
> +

∑
(k→ l)∈E

w̃ij,klrijskl
>

13: def T2
(
w: E 7→ R, r: E 7→ RR, s: E 7→ RS

)
:

14: . Unified algorithm for computing second-order
total; requires O

(
N3(R′+S′)+RS+N2RS

)
time, O

(
RS+N2(R+S)

)
space

15: . The following quantities are computed inO
(
N3
)

16: Compute all w̃ij using (14) and (22)
17: Compute B and L′ using (23) and (24)
18: . r, s, and f are first-order quantities.

19: r ←
∑

(i→ j)∈Ẽ

wijrij . O
(
N2R′

)
20: s←

∑
(i→ j)∈Ẽ

wijsij . O
(
N2S′

)
21: f ←

∑
(i→ j)∈Ẽ

wijrijsij
> . O

(
N2R′S′

)
22: r̂ ← 0; ŝ← 0
23: for i, j, k ∈ N : . O

(
N3
)

24: for (i′, j′) ∈ Lij : . O(1)
25: r̂kj′ +=Bi′kL

′
i′j′,ijwijrij . O(R′)

26: ŝj′k +=Bi′kL
′
i′j′,ijwijsij . O(S′)

27: . Apply (32); requires O
(
RS +N2RS

)
28: return f + 1

Zr s
> − Z

∑
j′,l′∈N̂

rj′l′ ŝj′l′
>

Figure 3: Three algorithms for computing second-order
totals. We recommend T2 as it achieves the best runtime
in general. The algorithms Tv2 and Th2 are presented for
pedagogical purposes in §5.2.

quently, the Th2 requires O
(
N2+RS

)
space.

Algorithm T2. So far we have seen that when R
is small, that Tv2 can be much faster than Th2 . On the



other hand, when R is large and R′ � R, Th2 can
be much faster than Tv2 . Can we get the best of Tv2
and Th2? Our unified algorithm, T2 in Fig. 3, does
just that. To derive it, we refactor the bottleneck of
Th2 using (25) and the distributive property20

∑
(i→ j)∈E
(k→ l)∈E

∂2Z

∂wij∂wkl
wijwklrijskl

>

=
1

Z
r s> − Z

∑
j′,l′∈N

r̂j′l′ ŝj′l′
> (28)

where

r̂j′l′ =
∑

(k→ l)∈E

∑
k′∈N

Bk′j′L
′
k′l′,klwklrkl (29)

ŝj′l′ =
∑

(i→ j)∈E

∑
i′∈N

Bi′l′L
′
i′j′,ijwijsij (30)

The remainder of t is given by

f
def
=

∑
(i→ j)∈E

w̃ijrijsij
> (31)

Therefore, we can find t by

t = f +
1

Z
r s> − Z

∑
j′,l′∈N

r̂j′l′ ŝj′l′
> (32)

We provide a proof in App. B.
Now, we can compute r and s using T1 in
O
(
N3 +N2(R′ + S′)

)
and their outer product in

O(RS). Additionally, we can compute all r̂j′l′
and ŝj′l′ values in O

(
N3R′

)
and O

(
N3S′

)
, re-

spectively. If r is R′ sparse, then each r̂j′l′ is

R
def
= min(R,N R′) sparse. We can compute the

sum over all r̂j′l′ ŝj′l′
> in O

(
N2RS

)
time. Com-

bining these runtimes, we have that T2 runs in
O
(
N3(R′ + S′) +RS +N2R S

)
. T2 requires a

total ofO
(
RS+N2(R+S)

)
: O(RS) space for t,

and O
(
N2(R+S)

)
space for the r̂ and ŝ values.

We return to our original question: Can we get
the best of Tv2 and Th2? In the case when R is small,
T2 matches the runtime of Tv2 . Furthermore, in the
case when R is large and R′ � R, T2 matches the
runtime of Th2 . Therefore, T2 is able to achieve the
best runtime regardless of the functions r and s.
20Refactoring sum–product expressions via the distributive

property is the cornerstone of dynamic programming; similar
examples in natural language processing include Eisner and
Blatz (2007); Gildea (2011).

6 Applications and Prior Work

In this section, we apply our framework to com-
pute a number of important quantities that are used
when working with probabilistic models. We relate
our approach to existing algorithms in the literature
(where applicable), and mention existing and po-
tential applications. Many of our quantities were
covered in Li and Eisner (2009) for B-hypergraphs;
we extend their results to spanning trees.

In most applications that involve training a prob-
abilistic model, the edge weights in the model will
be parameterized in some fashion. Traditional
approaches (Koo et al., 2007; Smith and Smith,
2007; McDonald et al., 2005a; Druck, 2011) use
log-linear parameterizations, whereas more recent
work (Dozat and Manning, 2017; Liu and Lapata,
2018; Ma and Xia, 2014) use neural-network pa-
rameterizations. Our algorithms are agnostic as to
how edges are parameterized.

6.1 Risk
Risk minimization is a technique for training struc-
tured prediction models (Li and Eisner, 2009;
Smith and Eisner, 2006; Stoyanov and Eisner,
2012). Risk is the expectation of a cost function
r: D 7→ R that measures the number of mistakes
in comparison to a target tree d∗. In the context
of dependency parsing, r(d) can be the labeled or
unlabeled attachment score (LAS and UAS, respec-
tively), both of which are additively decomposable.
The unlabeled case decomposes as follows:

rij =

{
1
N if (i→ j) ∈ d∗

0 otherwise
(33)

where d∗ is the gold tree and N is the length of
the sentence. Note that the use of 1

N ensures that
r(d) will be a score between 0 and 1. We can
then obtain the expected attachment score using T1,
and we can evaluate its gradient in the same run-
time using reverse-mode AD or T2. In this case,
s: D 7→ RS is the one-hot representation of the
edges; thus, we have S = N2. However, because
s is 1-sparse, we have S′ = 1. Additionally, as
r does not depend on w, we do not need to add a
first-order term to find the gradient. Therefore, the
runtime for the gradient is also O

(
N3
)
.

6.2 Shannon Entropy
Entropy is a useful measure of uncertainty, which
has been used a number of times in dependency



Language Sentence
length

Entropy
(nats / word)

Average Runtime (ms) Speed-up
T1 (Fig. 2) Past Approach

Finnish 9.23 0.6092 0.4623 1.882 4.1
English 12.45 0.8264 0.5102 2.778 5.4
German 17.56 0.8933 0.5583 4.104 7.3
French 24.65 0.8923 0.5635 5.742 10.2
Arabic 36.05 0.7163 0.6220 9.368 15.1

Table 1: Average runtime of computing entropy of dependency parser output on five languages. We use the weights
of the Stanford Dependency Parser (Qi et al., 2018). The past approach is that of Smith and Eisner (2007).

parsing (Smith and Eisner, 2007; Druck and Smith,
2009; Ma and Xia, 2014) for semi-supervised learn-
ing. Smith and Eisner (2007) employ entropy regu-
larization (Grandvalet and Bengio, 2004) to boot-
strap dependency parsing. However, they give an
algorithm for the Shannon entropy,

H(p)
def
= Ed[− log p(d)] (34)

that runs in O
(
N4
)
.21 Recall from §3 that

− log p(d) is additively decomposable; thus, run-
ning T1 with rij =

1
N log Z− logwij computes

H(p) in O
(
N3
)
. Martins et al. (2010)’s algorithm

for computing H(p) is precisely the same as ours.
However, they do not describe how to compute
its gradient. As with risk, we can find the gradi-
ent of entropy using T2 or using reverse-mode AD.
When using T2, since the gradient of r with re-
spect to w is not 0, we add the first-order quantity
T1(w,∇r) as in (21). For entropy, we have that
∇rij = 1

NZ∇Z−
1
wij

−→
1ij .

Experiment. We briefly demonstrate the prac-
tical speed-up over Smith and Eisner (2007)’s
O
(
N4
)

algorithm. We compare the average run-
time per sentence of five different UD corpora.22

The languages have different average sentence
lengths to demonstrate the extra speed-up gained
when calculating the entropy of longer sentences
(that is, D would be a larger set). Tab. 1 shows that
even for a corpus of short sentences (Finnish), we
achieve a 4 times speed-up. This increases to 15
times as we move to corpora with longer sentences
(Arabic).
21Their algorithm calls MTT N times, where the ith call to

MTT multiplies the set of incoming edges to ith non-root
node by their log weight.

22Times were measured using an Intel(R) Core(TM) i7-7500U
processor with 16GB RAM.

6.3 Kullback–Leibler Divergence
To the best of our knowledge, no algorithms to
compute the Kullback–Leibler (KL) divergence be-
tween two graph-based parsers (nor its gradient)
have been given in the literature. We show how this
can be achieved easily within our framework. The
KL divergence is defined as

KL(p || q) def
=
∑
d∈D

p(d) log
p(d)

q(d)
(35)

This takes a similar form to the Shannon entropy
in (34). We can therefore choose our additively de-
composable function to be rij = log

wij
qij
− 1
N log Z.

Running T1 with these weights computes the KL
divergence in O

(
N3
)

time. To find the gradi-
ent of the KL divergence, we return the sum of
T2(w, r, s) where we chose sij = 1

wij

−→
1ij and add

T1(w,∇r). For the KL divergence, we have that
∇rij = 1

wij

−→
1ij −∇Z 1

NZ .

6.4 Gradient of the GE Objective
The generalized expectation criterion (McCallum
et al., 2007; Druck et al., 2009) is a method for
semi-supervised training using weakly labeled data.
GE fits model parameters by encouraging models
to match certain expectation constraints, such as
marginal-label distributions, on the unlabeled data.
More formally, let f be a feature function f(d) ∈
RF , and with a target value of f∗ ∈ RF that has
been specified using domain knowledge. For ex-
ample, given an English part-of-speech tagged sen-
tence, we can provide the following light supervi-
sion to our model: determiners should attach to
the nearest noun on their right. This is an example
of a very precise heuristic for dependency parsing
English that has high precision.

GE then minimizes the following objective,

GE(p, f∗) =
1

2

∣∣∣∣∣∣Ed[f(d)]− f∗∣∣∣∣∣∣2 (36)



which encourages the model parameters to match
the target expectations. Most methods for optimiz-
ing (36) will make use of the gradient.

We note that by application of the chain rule,
the gradient of the GE objective is a second-order
quantity, and so we can use T2 to compute it. As
we discussed in §1, the gradient of the GE has led
to confusion in the literature (Druck et al., 2009;
Druck and Smith, 2009; Druck, 2011). The best
runtime bound prior to our work is Druck et al.
(2009)’s O

(
N4F ′

)
algorithm. T2 is strictly bet-

ter at O
(
N3+N2F ′

)
time.23 Alternatively, as the

GE objective is a scalar, we can compute its gra-
dient in O

(
N3+N2F ′

)
using reverse-mode AD.

Druck (2011) acknowledges that AD can be used,
but questions its practicality and numerical accu-
racy. We hope to dispel this misconception in the
following experiment.

Experiment. We compute the GE objective and
its gradient for almost 1500 sentences of the En-
glish UD Treebank24 (Nivre et al., 2018) using 20
features extracted using the methodology of Druck
et al. (2009). We note that T2 obtains a speed-up
of 9 times over Druck and Smith (2009)’s strategy
of materializing the covariance matrix (i.e., Th2).
Additionally, the gradients from both approaches
are equivalent with an absolute tolerance of 10−16.

7 Conclusion

We presented a general framework for computing
first- and second-order expectations for additively
decomposable functions. We did this by exploiting
a key connection between gradients and expecta-
tions that allows us to solve our problems using
automatic differentiation. The algorithms we pro-
vide are simple, efficient, and extendable to many
expectations. The automatic differentiation prin-
ciple has been applied in other settings, such as
weighted context-free grammars (Eisner, 2016) and
chain-structured models (Vieira et al., 2016). We
hope that this paper will also serve as a tutorial
on how to compute expectations over trees so that
the list of cautionary tales does not grow further.
Particularly, we hope that this will allow for the KL
23We must apply a chain rule in order to use T2. To do this,

we first run T1 to obtain f in O
(
N3 +N2F ′

)
. We then

run T2 with the dot product of f and f − f∗, which has
a dimensionality of 1, and the sparse one-hot vectors as
before. The execution of T2 then takes O

(
N3
)
, giving us

the desired runtime. Full detail is available in our code.
24We used all sentences in the test set, which were between

five and 150 words.

divergence to be used in semi-supervised training
of dependency parsers. Our aim is for our approach
for computing expectations to be extended to other
structured prediction models.

Acknowledgments

We would like to thank action editor Dan Gildea
and the three anonymous reviewers for their valu-
able feedback and suggestions. The first author is
supported by the University of Cambridge School
of Technology Vice-Chancellor’s Scholarship as
well as by the University of Cambridge Department
of Computer Science and Technology’s EPSRC.

References

Martín Abadi, Ashish Agarwal, Paul Barham,
Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vi-
jay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. Tensor-
Flow: Large-scale machine learning on hetero-
geneous systems. Software available from ten-
sorflow.org.

Eduard Bejček, Eva Hajičová, Jan Hajič,
Pavlína Jínová, Václava Kettnerová, Veronika
Kolářová, Marie Mikulová, Jiří Mírovský, Anna
Nedoluzhko, Jarmila Panevová, Lucie Poláková,
Magda Ševčíková, Jan Štěpánek, and Šárka
Zikánová. 2013. Prague dependency treebank
3.0.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dou-
gal Maclaurin, and Skye Wanderman-Milne.
2018. JAX: Composable transformations of
Python+NumPy programs.

Adnan Darwiche. 2003. A differential approach to
inference in Bayesian networks. Journal of the
ACM, 50(3).

http://tensorflow.org/
http://tensorflow.org/
http://tensorflow.org/
http://ufal.mff.cuni.cz/pdt3.0
http://ufal.mff.cuni.cz/pdt3.0
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1145/765568.765570
https://doi.org/10.1145/765568.765570


Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency
parsing. In Proceedings of the International
Conference on Learning Representations.

Gregory Druck. 2011. Generalized Expectation
Criteria for Lightly Supervised Learning. Ph.D.
thesis, University of Massachusetts Amherst.

Gregory Druck, Gideon Mann, and Andrew McCal-
lum. 2009. Semi-supervised learning of depen-
dency parsers using generalized expectation cri-
teria. In Proceedings of the International Joint
Conference on Natural Language Processing.

Gregory Druck and David Smith. 2009. Com-
puting conditional feature covariance in non-
projective tree conditional random fields. Tech-
nical Report UM-CS-2009-060, University of
Massachusetts.

Jean-Guillaume Dumas and Victor Pan. 2016. Fast
matrix multiplication and symbolic computation.
arXiv preprint arXiv:1612.05766.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial
paper). In Proceedings of the Workshop on Struc-
tured Prediction for NLP@EMNLP 2016, Austin,
TX, USA, November 5, 2016.

Jason Eisner and John Blatz. 2007. Program
transformations for optimization of parsing al-
gorithms and other weighted logic programs. In
Proceedings of the Conference on Formal Gram-
mar, pages 45–85. CSLI Publications.

Harold N. Gabow and Robert Endre Tarjan. 1984.
Efficient algorithms for a family of matroid inter-
section problems. Journal of Algorithms, 5(1).

Giorgio Gallo, Giustino Longo, and Stefano Pallot-
tino. 1993. Directed hypergraphs and applica-
tions. Discrete Applied Mathematics, 42(2).

Daniel Gildea. 2011. Grammar factorization by
tree decomposition. Computational Linguistics,
37(1):231–248.

Yves Grandvalet and Yoshua Bengio. 2004. Semi-
supervised learning by entropy minimization. In
Advances in Neural Information Processing Sys-
tems.

Andreas Griewank and Andrea Walther. 2008.
Evaluating Derivatives–Principles and Tech-
niques of Algorithmic Differentiation, 2 edition.
SIAM.

M. Jerrum and M. Snir. 1982. Some exact complex-
ity results for straight-line computations over
semirings. Journal of the Association for Com-
puting Machinery, 29(3).

Erich Kaltofen. 1992. On computing determinants
of matrices without divisions. In Papers from
the International Symposium on Symbolic and
Algebraic Computation.

Gustav Kirchhoff. 1847. Über die auflösung
der gleichungen, auf welche man bei der un-
tersuchung der linearen vertheilung galvanis-
cher ströme geführt wird. Annalen der Physik,
148(12).

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A dependency parser for
tweets. In Proceedings of the Conference on
Empirical Methods in Natural Language Pro-
cessing.

Terry Koo, Amir Globerson, Xavier Carreras, and
Michael Collins. 2007. Structured prediction
models via the matrix-tree theorem. In Pro-
ceedings of the Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning.

Zhifei Li and Jason Eisner. 2009. First- and second-
order expectation semirings with applications
to minimum-risk training on translation forests.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Yang Liu and Mirella Lapata. 2018. Learning struc-
tured text representations. Transactions of the
Association for Computational Linguistics, 6.

Xuezhe Ma and Eduard Hovy. 2017. Neural prob-
abilistic model for non-projective MST parsing.
In Proceedings of the International Joint Confer-
ence on Natural Language Processing.

Xuezhe Ma and Fei Xia. 2014. Unsupervised de-
pendency parsing with transferring distribution
via parallel guidance and entropy regularization.
In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics.

https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
http://gregorydruck.name/pubs/thesis.pdf
http://gregorydruck.name/pubs/thesis.pdf
https://www.aclweb.org/anthology/P09-1041
https://www.aclweb.org/anthology/P09-1041
https://www.aclweb.org/anthology/P09-1041
http://gregorydruck.name/pubs/druck09covariance.pdf
http://gregorydruck.name/pubs/druck09covariance.pdf
http://gregorydruck.name/pubs/druck09covariance.pdf
https://arxiv.org/pdf/1612.05766.pdf
https://arxiv.org/pdf/1612.05766.pdf
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1162/coli_a_00040
https://doi.org/10.1162/coli_a_00040
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization
http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9780898717761
https://dl.acm.org/doi/pdf/10.1145/322326.322341
https://dl.acm.org/doi/pdf/10.1145/322326.322341
https://dl.acm.org/doi/pdf/10.1145/322326.322341
https://dl.acm.org/doi/pdf/10.1145/143242.143350
https://dl.acm.org/doi/pdf/10.1145/143242.143350
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18471481202
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18471481202
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18471481202
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18471481202
https://doi.org/10.3115/v1/D14-1108
https://doi.org/10.3115/v1/D14-1108
https://www.aclweb.org/anthology/D07-1015
https://www.aclweb.org/anthology/D07-1015
http://cs.jhu.edu/~jason/papers/#li-eisner-2009
http://cs.jhu.edu/~jason/papers/#li-eisner-2009
http://cs.jhu.edu/~jason/papers/#li-eisner-2009
https://doi.org/10.1162/tacl_a_00005
https://doi.org/10.1162/tacl_a_00005
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/I17-1007
https://doi.org/10.3115/v1/P14-1126
https://doi.org/10.3115/v1/P14-1126
https://doi.org/10.3115/v1/P14-1126


André Martins, Noah Smith, Eric Xing, Pedro
Aguiar, and Mário Figueiredo. 2010. Turbo
parsers: Dependency parsing by approximate
variational inference. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing, pages 34–44.

Andrew McCallum, Gideon Mann, and Gregory
Druck. 2007. Generalized expectation crite-
ria. Technical Report 95, University of Mas-
sachusetts.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005a. Online large-margin training
of dependency parsers. In Proceedings of the
Annual Meeting of the Association for Computa-
tional Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov,
and Jan Hajič. 2005b. Non-projective depen-
dency parsing using spanning tree algorithms.
In Proceedings of Human Language Technology
Conference and Conference on Empirical Meth-
ods in Natural Language Processing.

Ryan McDonald and Giorgio Satta. 2007. On the
complexity of non-projective data-driven depen-
dency parsing. In Proceedings of the Interna-
tional Conference on Parsing Technologies.

István Miklós. 2019. Computational Complexity
of Counting and Sampling. CRC Press.

Joakim Nivre, Mitchell Abrams, Željko Agić,
Lars Ahrenberg, Lene Antonsen, Katya
Aplonova, Maria Jesus Aranzabe, Gashaw
Arutie, Masayuki Asahara, Luma Ateyah,
Mohammed Attia, Aitziber Atutxa, Liesbeth
Augustinus, Elena Badmaeva, Miguel Balles-
teros, Esha Banerjee, Sebastian Bank, Verginica
Barbu Mititelu, Victoria Basmov, John Bauer,
Sandra Bellato, Kepa Bengoetxea, Yevgeni
Berzak, Irshad Ahmad Bhat, Riyaz Ahmad Bhat,
Erica Biagetti, Eckhard Bick, Rogier Blokland,
Victoria Bobicev, Carl Börstell, Cristina Bosco,
Gosse Bouma, Sam Bowman, Adriane Boyd,
Aljoscha Burchardt, Marie Candito, Bernard
Caron, Gauthier Caron, Gülşen Cebiroğlu Ery-
iğit, Flavio Massimiliano Cecchini, Giuseppe
G. A. Celano, Slavomír Čéplö, Savas Cetin,
Fabricio Chalub, Jinho Choi, Yongseok Cho,
Jayeol Chun, Silvie Cinková, Aurélie Collomb,
Çağrı Çöltekin, Miriam Connor, Marine
Courtin, Elizabeth Davidson, Marie-Catherine

de Marneffe, Valeria de Paiva, Arantza Diaz de
Ilarraza, Carly Dickerson, Peter Dirix, Kaja
Dobrovoljc, Timothy Dozat, Kira Droganova,
Puneet Dwivedi, Marhaba Eli, Ali Elkahky,
Binyam Ephrem, Tomaž Erjavec, Aline Etienne,
Richárd Farkas, Hector Fernandez Alcalde,
Jennifer Foster, Cláudia Freitas, Katarína
Gajdošová, Daniel Galbraith, Marcos Garcia,
Moa Gärdenfors, Sebastian Garza, Kim Gerdes,
Filip Ginter, Iakes Goenaga, Koldo Gojenola,
Memduh Gökırmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra,
Matias Grioni, Normunds Grūzı̄tis, Bruno
Guillaume, Céline Guillot-Barbance, Nizar
Habash, Jan Hajič, Jan Hajič jr., Linh Hà Mỹ,
Na-Rae Han, Kim Harris, Dag Haug, Barbora
Hladká, Jaroslava Hlaváčová, Florinel Hociung,
Petter Hohle, Jena Hwang, Radu Ion, Elena
Irimia, O. lájídé Ishola, Tomáš Jelínek, Anders
Johannsen, Fredrik Jørgensen, Hüner Kaşıkara,
Sylvain Kahane, Hiroshi Kanayama, Jenna
Kanerva, Boris Katz, Tolga Kayadelen, Jessica
Kenney, Václava Kettnerová, Jesse Kirchner,
Kamil Kopacewicz, Natalia Kotsyba, Simon
Krek, Sookyoung Kwak, Veronika Laippala,
Lorenzo Lambertino, Lucia Lam, Tatiana Lando,
Septina Dian Larasati, Alexei Lavrentiev, John
Lee, Phuong Lê Hồng, Alessandro Lenci, Saran
Lertpradit, Herman Leung, Cheuk Ying Li, Josie
Li, Keying Li, KyungTae Lim, Nikola Ljubešić,
Olga Loginova, Olga Lyashevskaya, Teresa
Lynn, Vivien Macketanz, Aibek Makazhanov,
Michael Mandl, Christopher Manning, Ruli
Manurung, Cătălina Mărănduc, David Mareček,
Katrin Marheinecke, Héctor Martínez Alonso,
André Martins, Jan Mašek, Yuji Matsumoto,
Ryan McDonald, Gustavo Mendonça, Niko
Miekka, Margarita Misirpashayeva, Anna
Missilä, Cătălin Mititelu, Yusuke Miyao,
Simonetta Montemagni, Amir More, Laura
Moreno Romero, Keiko Sophie Mori, Shinsuke
Mori, Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Yugo Murawaki, Kaili
Müürisep, Pinkey Nainwani, Juan Ignacio
Navarro Horñiacek, Anna Nedoluzhko, Gunta
Nešpore-Bērzkalne, Luong Nguyễn Thi., Huyền
Nguyễn Thi. Minh, Vitaly Nikolaev, Rattima
Nitisaroj, Hanna Nurmi, Stina Ojala, Adédayo.
Olúòkun, Mai Omura, Petya Osenova, Robert
Östling, Lilja Øvrelid, Niko Partanen, Elena
Pascual, Marco Passarotti, Agnieszka Patejuk,

https://www.aclweb.org/anthology/D10-1004
https://www.aclweb.org/anthology/D10-1004
https://www.aclweb.org/anthology/D10-1004
https://people.cs.umass.edu/~mccallum/papers/ge08note.pdf
https://people.cs.umass.edu/~mccallum/papers/ge08note.pdf
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.3115/1219840.1219852
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/W07-2216
https://www.aclweb.org/anthology/W07-2216
https://www.aclweb.org/anthology/W07-2216
https://www.taylorfrancis.com/books/9781315266954
https://www.taylorfrancis.com/books/9781315266954


Guilherme Paulino-Passos, Siyao Peng, Cenel-
Augusto Perez, Guy Perrier, Slav Petrov, Jussi
Piitulainen, Emily Pitler, Barbara Plank, Thierry
Poibeau, Martin Popel, Lauma Pretkalnin, a,
Sophie Prévost, Prokopis Prokopidis, Adam
Przepiórkowski, Tiina Puolakainen, Sampo
Pyysalo, Andriela Rääbis, Alexandre Rade-
maker, Loganathan Ramasamy, Taraka Rama,
Carlos Ramisch, Vinit Ravishankar, Livy Real,
Siva Reddy, Georg Rehm, Michael Rießler,
Larissa Rinaldi, Laura Rituma, Luisa Rocha,
Mykhailo Romanenko, Rudolf Rosa, Davide
Rovati, Valentin Ros, ca, Olga Rudina, Jack
Rueter, Shoval Sadde, Benoît Sagot, Shadi
Saleh, Tanja Samardžić, Stephanie Samson,
Manuela Sanguinetti, Baiba Saulı̄te, Yanin
Sawanakunanon, Nathan Schneider, Sebastian
Schuster, Djamé Seddah, Wolfgang Seeker,
Mojgan Seraji, Mo Shen, Atsuko Shimada,
Muh Shohibussirri, Dmitry Sichinava, Na-
talia Silveira, Maria Simi, Radu Simionescu,
Katalin Simkó, Mária Šimková, Kiril Simov,
Aaron Smith, Isabela Soares-Bastos, Carolyn
Spadine, Antonio Stella, Milan Straka, Jana
Strnadová, Alane Suhr, Umut Sulubacak, Zsolt
Szántó, Dima Taji, Yuta Takahashi, Takaaki
Tanaka, Isabelle Tellier, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Francis Tyers, Sumire
Uematsu, Zdeňka Urešová, Larraitz Uria,
Hans Uszkoreit, Sowmya Vajjala, Daniel van
Niekerk, Gertjan van Noord, Viktor Varga, Eric
Villemonte de la Clergerie, Veronika Vincze,
Lars Wallin, Jing Xian Wang, Jonathan North
Washington, Seyi Williams, Mats Wirén, Tsegay
Woldemariam, Tak-sum Wong, Chunxiao Yan,
Marat M. Yavrumyan, Zhuoran Yu, Zdeněk
Žabokrtský, Amir Zeldes, Daniel Zeman, Many-
ing Zhang, and Hanzhi Zhu. 2018. Universal
dependencies 2.3. LINDAT/CLARIN digital
library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An imperative style, high-
performance deep learning library. In Advances

in Neural Information Processing Systems.

Peng Qi, Timothy Dozat, Yuhao Zhang, and
Christopher D. Manning. 2018. Universal de-
pendency parsing from scratch. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependen-
cies.

David A. Smith and Jason Eisner. 2006. Mini-
mum risk annealing for training log-linear mod-
els. In Proceedings of the COLING/ACL 2006
Main Conference Poster Sessions, pages 787–
794, Sydney, Australia. Association for Compu-
tational Linguistics.

David A. Smith and Jason Eisner. 2007. Boot-
strapping feature-rich dependency parsers with
entropic priors. In Proceedings of the Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural
Language Learning.

David A. Smith and Noah A. Smith. 2007. Prob-
abilistic models of nonprojective dependency
trees. In Proceedings of the Joint Conference
on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language
Learning (EMNLP-CoNLL).

G. W. Stewart. 1998. On the adjugate matrix. Lin-
ear Algebra and its Applications, 283(1-3).

Veselin Stoyanov and Jason Eisner. 2012.
Minimum-risk training of approximate CRF-
based NLP systems. In Proceedings of the
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies.

Lucien Tesnière. 1959. Eléments de syntaxe struc-
turale. Klincksieck.

W. T. Tutte. 1984. Graph Theory. Addison-Wesley
Publishing Company.

Tim Vieira, Ryan Cotterell, and Jason Eisner.
2016. Speed-accuracy tradeoffs in tagging with
variable-order CRFs and structured sparsity. In
Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Tim Vieira and Jason Eisner. 2017. Learning to
prune: Exploring the frontier of fast and accu-
rate parsing. Transactions of the Association for
Computational Linguistics, 5:263–278.

http://hdl.handle.net/11234/1-2895
http://hdl.handle.net/11234/1-2895
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://nlp.stanford.edu/pubs/qi2018universal.pdf
https://nlp.stanford.edu/pubs/qi2018universal.pdf
https://www.aclweb.org/anthology/P06-2101
https://www.aclweb.org/anthology/P06-2101
https://www.aclweb.org/anthology/P06-2101
http://cs.jhu.edu/~jason/papers/#smith-eisner-2007
http://cs.jhu.edu/~jason/papers/#smith-eisner-2007
http://cs.jhu.edu/~jason/papers/#smith-eisner-2007
https://www.aclweb.org/anthology/D07-1014
https://www.aclweb.org/anthology/D07-1014
https://www.aclweb.org/anthology/D07-1014
https://www.sciencedirect.com/science/article/pii/S0024379598100988
https://www.aclweb.org/anthology/N12-1013
https://www.aclweb.org/anthology/N12-1013
https://doi.org/10.18653/v1/D16-1206
https://doi.org/10.18653/v1/D16-1206
https://doi.org/10.1162/tacl_a_00060
https://doi.org/10.1162/tacl_a_00060
https://doi.org/10.1162/tacl_a_00060


Martin J. Wainwright and Michael I. Jordan. 2008.
Graphical Models, Exponential Families, and
Variational Inference. Now Publishers Inc.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell.
2020. Please mind the root: Decoding arbores-
cences for dependency parsing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
4809–4819.

https://doi.org/10.18653/v1/2020.emnlp-main.390
https://doi.org/10.18653/v1/2020.emnlp-main.390


A Derivation of∇2Z

In this section, we will provide a derivation for
the expression of ∇2Z given in (25). We begin by
taking the derivative of∇Z using (22)

∂2Z

∂wij∂wkl
=

∂

∂wij
Z
∑

(k′,l′)∈Lkl

Bk′l′L
′
k′l′,kl

We solve this by applying the product rule.25 The
first term of the product rule is

∂Z

∂wij

∑
(k′,l′)∈Lkl

Bk′l′L
′
k′l′,kl

= Z
∑

(i′,j′)∈Lij
(k′,l′)∈Lkl

Bi′j′Bk′l′L
′
i′j′,ijL

′
k′l′,kl

The second term of the product rule is

Z
∑

(k′,l′)∈Lkl

∂Bk′l′

∂wij
L′k′l′,kl

= −Z
∑

(i′,j′)∈Lij
(k′,l′)∈Lkl

Bi′l′Bk′j′L
′
i′j′,ijL

′
k′l′,kl

Summing these together yields (25).

B Proof of T2

In this section, we will prove the decomposition of
t that allows for the efficient factoring used in T2.
First, recall from Proposition 7 that we may find t
by

t =
∑

(i→ j)∈E

[
∂Z

∂wij
wijrijsij

>
]
+

∑
(i→ j)∈E

∑
(k→ l)∈E

[
∂2Z

∂wij∂wkl
wijwklrijskl

>
]

The first summand is the first-order total for func-
tion rijsij> (given as f in T2). We can write a
sum over all edges as the sum over pairs of nodes
in N . Similarly, elements in Lij can be consid-
ered as pairs of nodes. Therefore, unless specified
otherwise, we assume all variables in the base of
a summation are scoped to N . Then, the second
summand can then be rewritten∑
(i→ j)∈E

∑
(k→ l)∈E

∂2Z

∂wij∂wkl
wijwklrijskl

>

25Note that we do not have to take the derivative of L′k′l′,kl
as it is either 1 or −1.

=
∑

i,j,k,l,i′,j′,k′,l′

L′i′j′,ijZBi′j′Bk′l′L
′
k′l′,klwijwklrijskl

>

− L′i′j′,ijZBi′l′Bk′j′L
′
k′l′,klwijwklrijskl

>

By distributivity, the first term equals

Z

[∑
i,j,i′,j′

Bi′j′L
′
i′j′,ijwijrij

][∑
k,l,k′,l′

Bk′l′L
′
k′l′,klwklskl

]>

=
1

Z
r s>

By distributivity, the second term equals

Z
∑
j′,l′

[∑
k′,k,l

Bk′j′L
′
k′l′,klwklrkl︸ ︷︷ ︸

def
= r̂j′l′

]

[∑
i′,i,j

Bi′,l′L
′
i′j′,ijwijsij︸ ︷︷ ︸

def
= ŝj′l′

]>

= Z
∑
j′,l′

r̂j′l′ ŝj′l′
>

The above decomposition assumed we sum over
all i′, j′, k′, and l′ and so suggests we can compute
all r̂j′l′ and ŝj′l′ in O

(
N5(R′ + S′)

)
. However,

we can exploit the sparsity of ∇L to improve this.
Specifically, the follow algorithm computes r̂j′l′
for all j′, l′ ∈ N .
r̂j′l′ ← 0
for (k→ l) ∈ E : . O

(
N2
)

for (k′→ l′) ∈ Lkl : . O(1)
for j′ ∈ N : . O(N)

r̂j′l′ += Bk′l′L
′
k′l′,klwklrkl

Therefore, we can compute all r̂j′l′ and ŝj′l′ in
O
(
N3(R′ + S′)

)
. Each r̂ij is at most O(NR′)

dense, because there are at most O(N) R′-sparse
vectors added to it (by the inner loop). Hence,
r̂ij is O

(
R
)

sparse where R
def
= min(R,N R′).

This means that computing the sum of the outer-
products of all r̂ij and ŝij can be done in
O
(
N2RS

)
. Then, given that we have

t = f +
1

Z
r s− Z

∑
j′,l′

r̂j′l′ ŝj′l′
>

We can find t in

O
(
N3(R′+S′)+RS+N2RS

)


