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Abstract

Character-level string-to-string transduction is
an important component of various NLP tasks.
The goal is to map an input string to an out-
put string, where the strings may be of dif-
ferent lengths and have characters taken from
different alphabets. Recent approaches have
used sequence-to-sequence models with an at-
tention mechanism to learn which parts of the
input string the model should focus on during
the generation of the output string. Both soft
attention and hard monotonic attention have
been used, but hard non-monotonic attention
has only been used in other sequence model-
ing tasks such as image captioning (Xu et al.,
2015) and has required a stochastic approxima-
tion to compute the gradient. In this work, we
introduce an exact, polynomial-time algorithm
for marginalizing over the exponential num-
ber of non-monotonic alignments between two
strings, showing that hard attention models can
be viewed as neural reparameterizations of the
classical IBM Model 1. We compare soft and
hard non-monotonic attention experimentally
and find that the exact algorithm significantly
improves performance over the stochastic ap-
proximation and outperforms soft attention.

1 Introduction

Many natural language tasks are expressible as
string-to-string transductions operating at the char-
acter level. Probability models with recurrent neu-
ral parameterizations currently hold the state of the
art on many such tasks. On those string-to-string
transduction tasks that involve a mapping between
two strings of different lengths, it is often neces-
sary to resolve which input symbols are related to
which output symbols. As an example, consider
the task of transliterating a Russian word into the
Latin alphabet. In many cases, there exists a one-to-
two mapping between Cyrillic and Latin letters: in
Хурщёв (Khrushchev), the Russian Х can be con-
sidered to generate the Latin letters Kh. Supervision

is rarely, if ever, provided at the level of character-
to-character alignments—this is the problem that
attention seeks to solve in neural models.

With the rise of recurrent neural networks, this
problem has been handled with “soft” attention
rather than traditional hard alignment. Attention
(Bahdanau et al., 2015) is often described as “soft,”
as it does not clearly associate a single input sym-
bol with each output symbol, but rather offers a
fuzzy notion of what input symbols may be re-
sponsible for which symbols in the output. In con-
trast, an alignment directly associates a given in-
put symbol with a given output symbol. To ex-
press uncertainty, practitioners often place a distri-
bution over the exponential number of hard non-
monotonic alignments, just as a probabilistic parser
places a distribution over an exponential number of
trees. The goal, then, is to learn the parameters of
this distribution over all non-monotonic alignments
through backpropagation. Incorporating hard align-
ment into probabilistic transduction models dates
back much farther in the NLP literature; arguably,
originating with the seminal paper by Brown et al.
(1993). Some neural approaches have moved back
towards this approach of a more rigid alignment,
referring to it as “hard attention.” We will refer
to this as “hard attention” and to more classical
approaches as “alignment.”

This paper offers two insights into the usage of
hard alignment. First, we derive a dynamic pro-
gram for the exact computation of the likelihood in
a neural model with latent hard alignment: Previous
work has used a stochastic algorithm to approxi-
mately sum over the exponential number of align-
ments between strings. In so doing, we go on to
relate neural hard alignment models to the classical
IBM Model 1 for alignment in machine translation.
Second, we provide an experimental comparison
that indicates hard attention models outperform soft
attention models on three character-level string-to-
string transduction tasks: grapheme-to-phoneme

https://github.com/shijie-wu/neural-transducer


m e j r

m e j rm e j
Figure 1: Example of a non-monotonic character-level trans-
duction from the Micronesian language of Pingelapese. The
infinitive mejr is mapped through a reduplicative process to its
gerund mejmejr (Rehg and Sohl, 1981). Each input character
is drawn in green and each output character is drawn in purple,
connected with a line to the corresponding input character.

conversion, named-entity transliteration and mor-
phological inflection.

2 Non-Monotonic Transduction

This paper presents a novel, neural, probabilistic
latent-variable model for non-monotonic transduc-
tion. As a concrete example of a non-monotonic
transduction, consider the mapping of a Pinge-
lapese infinitive to its gerund, as shown in Fig. 1.
The mapping requires us to generate the output
string left-to-right, bouncing around the input string
out-of-order to determine the characters to trans-
duce from. As the non-monotonic alignment is the
latent variable, we will face a combinatorial prob-
lem: summing over all non-monotonic alignments.
The algorithmic contribution of this paper is the
derivation of a simple dynamic program for com-
puting this sum in polynomial time that still allows
for very rich recurrent neural featurization of the
model. With respect to the literature, our paper rep-
resents the first instance of exact marginalization
for a neural transducer with hard non-monotonic
alignment; previous methods, such as Rastogi et al.
(2016) and Aharoni and Goldberg (2017), are ex-
clusively monotonic.

Non-monotonic methods dominate character-
level transduction. Indeed, the state of art in clas-
sic character-level NLP tasks such as grapheme-
to-phoneme conversion (Yao and Zweig, 2015),
transliteration (Rosca and Breuel, 2016) and
morphological inflection generation (Kann and
Schütze, 2016) is held by the soft non-monotonic
method of Bahdanau et al. (2015). Even though
non-monotonicity is more common in word-level
tasks, it also exists in character-level transduction
tasks, as evidenced by our example in Fig. 1 and
the superior performance of non-monotonic meth-
ods. Our error analysis in §8.4 sheds some light on
why non-monotonic methods are the state of the
art in a seemingly monotonic task.

A Note on the Character-level Focus. A natu-
ral question at this point is why we are not experi-
menting with word-level transduction tasks, such
as machine translation. As we show in the §3.2
our method is often an order of magnitude slower,
since it will involve a mixture of softmaxes. Thus,
the exact marginalization scheme is practically un-
workable for machine translation; we discuss future
extensions for machine translation in §6. However,
the slow-down is no problem for character-level
tasks and we show empirical gains in §8.

3 Hard Non-Monotonic Alignment

3.1 The Latent-Variable Model
An alphabet is a finite, non-empty set. Given
two alphabets Σx = {x1, . . . , x|Σx|} and Σy =
{y1, . . . , y|Σy|}, probabilistic approaches to the
problem attempt to estimate a probability distribu-
tion p(y | x) where y ∈ Σ∗y and x ∈ Σ∗x. Foreshad-
owing, we will define the parameters of p to be, in
part, the parameters of a recurrent neural network,
in line with the state-of-the-art models. We define
the set A = {1, . . . , |x|}|y|, which has an interpre-
tation as the set of all (potentially non-monotonic)
alignments from x to y with the restriction that
each output symbol yi aligns to exactly one symbol
in x ∈ Σ∗x. In other words, A is the set of all many-
to-one alignments between x and y where many
may be as few as zero. We remark that |A| = |x||y|,
which is exponentially large in the length of the tar-
get string y. For an a ∈ A, ai = j refers to the
event that yi, the ith component of y, is aligned to
xj , the jth component of x.

We define a probability distribution over output
strings y conditioned on an input string x where
we marginalize out unobserved alignments a:

p(y | x) =
∑
a∈A

p(y,a | x) (1)

=
∑
a∈A

|y|∏
i=1

p(yi | ai,y<i,x) p(ai | y<i,x)︸ ︷︷ ︸
exponential number of terms

(2)

=

|y|∏
i=1

|x|∑
ai=1

p(yi | ai,y<i,x) p(ai | y<i,x)︸ ︷︷ ︸
polynomial number of terms

(3)

=

|y|∏
i=1

|x|∑
j=1

1ai,jαj(i) p(yi | ai,y<i,x) (4)



where we define αj(i) = p(ai | y<i,x) in order
to better notationally compare our model to that
of Bahdanau et al. (2015) in §5. Each distribution
p(yi | ai,y<i,x) in the definition of the model
has a clean interpretation as a distribution over
the output vocabulary Σy, given an input string
x ∈ Σ∗x, where yi is aligned to xj . Thus, one way
of thinking about this hard alignment model is as
a product of mixture models, one mixture at each
step, with mixing coefficients αj(i).

Why Does Dynamic Programming Work?
Our dynamic program to compute the likelihood,
fully specified in eq. (3), is quite simple: The non-
monotonic alignments are independent of each
other, i.e., αj(i) is independent of αj(i−1), condi-
tioned on the observed sequence y. This means that
we can cleverly rearrange the terms in eq. (2) using
the distributive property. Were this not the case,
we could not do better than having an exponential
number of summands. This is immediately clear
when we view our model as a graphical model, as in
Fig. 2: There is no active trail from ai to ak where
k > i, ignoring the dashed lines. Note that this is
no different than the tricks used to achieve exact
inference in nth-order Markov models—one makes
an independence assumption between the current
bit of structure and the previous bits of structure to
allow an efficient algorithm. For a proof of eq. (2)–
eq. (3), one may look in Brown et al. (1993). Fore-
shadowing, we note that certain parameterizations
make use of input feeding, which breaks this inde-
pendence; see §5.1.

Relation to IBM Model 1. The derivation above
is similar to that of the IBM alignment model 1. We
remark, however, two key generalizations that will
serve our recurrent neural parameterization well in
§4. First, traditionally, derivations of IBM Model 1
omit a prior over alignments p(ai | x), taking it to
be uniform. Due to this omission, an additional mul-
tiplicative constant ε/|x||y| is introduced to ensure
the distribution remains normalized (Koehn, 2009).
Second, IBM Model 1 does not condition on previ-
ously generated words on the output side. In other
words, in their original model, Brown et al. (1993)
assume that p(yi | ai,y<i,x) = p(yi | ai,x),
forsaking dependence on y<i. We note that there
is no reason why we need to make this indepen-
dence assumption—we will likely want a target-
side language model in transduction. Indeed, subse-
quent statistical machine translation systems, e.g.,

MOSES (Koehn et al., 2007), integrate a language
model into the decoder. It is of note that many
models in NLP have made similar independence
assumptions, e.g., the emission distribution hid-
den Markov models (HMMs) are typically taken
to be independent of all previous emissions (Ra-
biner, 1989). These assumptions are generally not
necessary.

3.2 Algorithmic Analysis: Time Complexity

Let us assume that the requisite probability dis-
tributions are computable in O(1) time and the
softmax takes O(|Σy|). Then, by inspection, the
computation of the distribution in eq. (4) is
O (|x| · |y| · |Σy|), as the sum in eq. (3) contains
this many terms thanks to the dynamic program
that allowed us to rearrange the sum and the prod-
uct. While this “trick” is well known in the NLP
literature—it dates from the seminal work in statis-
tical machine translation by Brown et al. (1993)—it
has been forgotten in recent formulations of hard
alignment (Xu et al., 2015), which use stochas-
tic approximation to handle the exponential sum-
mands. As we will see in §5, we can compute the
soft-attention model of Bahdanau et al. (2015) in
O (|x| · |y|+ |y| · |Σy|) time. When Σy is large,
for example in case of machine translation with
tens of thousands of Σy at least, we can ignore
|x| · |y| in soft-attention model, and the exact
marginalization has an extra |x|-factor compared
to soft-attention model. In practice, Shi and Knight
(2017) show the bottleneck of a NMT system is the
softmax layer, making the extra |x|-factor practi-
cally cumbersome.

4 Recurrent Neural Parameterization

How do we parameterize p(yi | ai,y<i,x) and
αj(i) in our hard, non-monotonic transduction
model? We will use a neural network identical to
the one proposed in the attention-based sequence-
to-sequence model of Luong et al. (2015) without
input feeding (a variant of Bahdanau et al. (2015)).

4.1 Encoding the Input

All models discussed in this exposition will make
use of the same mechanism for mapping a source
string x ∈ Σ∗x into a fixed-length representation
in Rdh . This mapping will take the form of a bidi-
rectional recurrent neural network encoder, which
works as follows: each element of Σx is mapped to
an embedding vector of length de through a map-
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Figure 2: Our hard-attention model without input feeding viewed as a graphical model. Note that the circular nodes are random
variables and the diamond nodes deterministic variables (h(dec)

i is first discussed in §4.3). The independence assumption between
the alignments ai when the yi are observed becomes clear. Note that we have omitted arcs from x to y1, y2, y3 and y4 for clarity
(to avoid crossing arcs). We alert the reader that the dashed edges show the additional dependencies added in the input feeding
version, as discussed in §5.1. Once we add these in, the ai are no longer independent and break exact marginalization. Note
the hard-attention model does not enforce an exactly one-to-one constraint. Each source-side word is free to align to many of
the target-side words, independent of context. In the latent variable model, the x variable is a vector of source words, and the
alignment may be over more than one element of x.

ping: e : Σx → Rde . Now, the RNN folds the
following recursion over the string x left-to-right:
−→
h (enc)

j = tanh
(−→
U(enc) e(enc)(xj)+ (5)
−→
V (enc)−→h (enc)

j−1 +
−→
b (enc)

)
where we fix the 0th hidden state h(enc)

0 to the
zero vector and the matrices

−→
U(enc) ∈ Rdh×de ,−→

V (enc) ∈ Rdh×dh and the bias term
−→
b (enc) ∈ Rdh

are parameters to be learned. Performing the same
procedure on the reversed string and using an
RNN with different parameters, we arrive at hid-
den state vectors

←−
h (enc)

j . The final hidden states
from the encoder are the concatenation of the two,
i.e., h(enc)

j =
−→
h (enc)

j ⊕
←−
h (enc)

j , where ⊕ is vector
concatenation.

As has become standard, we will use an exten-
sion to this recursion: we apply the long short-
term memory (LSTM; Hochreiter and Schmidhu-
ber, 1997) recursions, rather than those of a vanilla
RNN (Elman network; Elman, 1990).

4.2 Parameterization.
Now, we define the alignment distribution

αj(i) =
exp(eij)∑|x|

j′=1 exp(eij′)
(6)

eij = h(dec)
i

>
Th(enc)

j (7)

where T ∈ Rdh×2dh and h(dec)
i , the decoder RNN’s

hidden state, is defined in §4.3. Importantly, the
alignment distribution αj(i) at time step i will only
depend on the prefix of the output string y<i gen-
erated so far. This is clear since the output-side
decoder is a unidirectional RNN.

We also define

p(yi | ai,y<i,x) = (8)

softmax
(
Wf(h(dec)

i ,h(enc)
ai )

)
The function f is a non-linear and vector-valued;
one popular choice of f is a multilayer perceptron
with parameters to be learned. We define

f(h(dec)
i ,h(enc)

ai ) = (9)

tanh
(
S (h(dec)

i ⊕ h(enc)
ai )

)
where S ∈ Rds×3dh .

4.3 Updating the hidden state h(dec)
i

The hidden state h(dec)
i is also updated through the

LSTM recurrences (Hochreiter and Schmidhuber,
1997). The RNN version of the recurrence mirrors
that of the encoder,

h(dec)
i = tanh

(
U(dec) e(dec)(yi−1) + (10)

V(dec) h(dec)
i−1 + b(dec)

)



where e(dec) : Σy → Rde produces an embedding
of each of the symbols in the output alphabet. What
is crucial about this RNN, like the αj(i), is that
it only summarizes the characters decoded so far
independently of the previous attention weights. In
other words, the attention weights at time step i
will have no influence from the attention weights at
previous time steps, shown in Fig. 2. This is what
allows for dynamic programming.

5 Transduction with Soft Attention

In order to contrast it with the hard alignment mech-
anism we develop, we here introduce Luong atten-
tion (Luong et al., 2015) for recurrent neural se-
quence to sequence models (Sutskever et al., 2014).
Note that this model will also serve as an experi-
mental baseline in §8.

The soft-attention transduction model defines a
distribution over the output Σ∗y, much like the hard-
attention model, with the following expression:

p(y | x) =

|y|∏
i=1

p(yi | y<i,x) (11)

where we define each conditional distribution as

p(yi | y<i,x) = (12)

softmax
(
Wf(h(dec)

i , ci)
)

We reuse the function f in eq. (9). The hidden state
h(dec)
i , as before, is the ith state of a target-side

language model that summarizes the prefix of the
string decoded so far; this is explained in §4.3. And,
finally, we define the context vector

ci =

|x|∑
j=1

αj(i)h
(enc)
j (13)

using the same alignment distribution as in §4.2. In
the context of the soft-attention model, this distri-
bution is referred to as the attention weights.

Inspection shows that there is only a small dif-
ference between the soft-attention model presented
here and and our hard non-monotonic attention
model. The difference is where we place the proba-
bilities αj(i). In the soft-attention version, we place
them inside the softmax (and the function f ), as in
eq. (12), and we have a mixture of the encoder’s
hidden states, the context vector, that we feed into
the model. On the other hand, if we place them out-
side the softmax, we have a mixture of softmaxes,
as shown in eq. (3). Both models have identical set
of parameters.

5.1 Input Feeding: What’s That?

The equations in eq. (10), however, are not the
only approach. Input-feeding is another popular
approach that is, perhaps, standard at this point
(Luong et al., 2015). Input feeding refers to the
setting where the architecture designer additionally
feeds the attention weights into the update for the
decoder’s hidden state. This yields the recursion

h(dec)
i = tanh

(
U(dec) (e(dec)(yi−1)⊕ c̄i−1) +

V(dec) h(dec)
i−1 + b(dec)

)
(14)

where c̄i−1 = f(h(dec)
i−1 , ci−1). Note that this re-

quires that U(dec) ∈ Rdh×(de+ds). This is the archi-
tecture discussed in Bahdanau et al. (2015, §3.1). In
contrast to the architecture above, this architecture
has attention weights that do depend on previous
attention weights due to the feeding in of the con-
text vector ci. See Cohn et al. (2016) for an attempt
to incorporate structural biases into the manner in
which the attention distribution is influenced by
previous attention distributions.

5.2 Combining Hard Non-Monotonic
Attention with Input Feeding

To combine hard attention with input feeding, Xu
et al. (2015) derive a variational lower bound on
the log-likelihood though Jensen’s inequality:

log p(y | x) = log
∑
a∈A

p(y,a | x) (15)

= log
∑
a∈A

p(a | x) p(y | x,a) (16)

≥
∑
a∈A

p(a | x) log p(y | x,a) (17)

Note that we have omitted the dependence of p(a |
x) on the appropriate prefix of y; this was done for
notational simplicity. Using this bound, Xu et al.
(2015) derive an efficient approximation to the gra-
dient using the REINFORCE trick of Williams
(1992). This sampling-based gradient estimator is
then used for learning, but suffers from high vari-
ance. We compare to this model in §8.

6 Future Work

Just as Brown et al. (1993) started with IBM
Model 1 and build up to richer models, we can
do the same. Extensions, resembling those of IBM
Model 2 and the HMM aligner (Vogel et al., 1996)



source target

Grapheme-to-phoneme conversion a c t i o n AE K SH AH N

Named-entity transliteration A A C H E N 아헨

Morphological inflection N AT+ALL SG l i p u k e l i p u k k e e l l e

Table 1: Example of source and target string for each task as processed by the model

that generalize IBM Model 1, are easily bolted on
to our proposed model as well. If we are willing
to perform approximate inference, we may also
consider fertility as found in IBM Model 4.

In order to extend our method to machine trans-
lation (MT) in any practical manner, we require an
approximation to the softmax. Given that the soft-
max is already the bottleneck of neural MT models
(Shi and Knight, 2017), we can not afford ourselves
aO(|x|) slowdown during training. Many methods
have been proposed for approximating the soft-
max (Goodman, 2001; Bengio et al.; Gutmann and
Hyvärinen, 2010). More recently, Chen et al. (2016)
compared methods on neural language modeling
and Grave et al. (2017) proposed a GPU-friendly
method.

7 The Tasks

The empirical portion of the paper focuses on
character-level string-to-string transduction prob-
lems. We consider three tasks: G : grapheme-to-
phoneme conversion, T : named-entity translitera-
tion, and I : morphological inflection. We describe
each briefly in turn and we give an example of a
source and target string for each task in Tab. 1.

Grapheme-to-Phoneme Conversion. We use
the standard grapheme-to-phoneme conversion
(G2P) dataset: the Sphinx-compatible version of
CMUDict (Weide, 1998) and NetTalk (Sejnowski
and Rosenberg, 1987). G2P transduces a word, a
string of graphemes, to its pronunciation, a string
of phonemes. We evaluate with word error rate
(WER) and phoneme error rate (PER) (Yao and
Zweig, 2015). PER is equal to the edit distance
divided by the length of the string of phonemes.

Named-Entity Transliteration. We use the
NEWS 2015 shared task on machine transliteration
(Zhang et al., 2015) as our named-entity translitera-
tion dataset. It contains 14 language pairs. Translit-
eration transduces a named entity from its source
language to a target language—in other words,
from a string in the source orthography to a string
in the target orthography. We evaluate with word
accuracy in percentage (ACC) and mean F-score

soft attention hard alignment

in
pu

t-
fe

d yes 1 Bahdanau et al. (2015); Luong et al. (2015) 2 Xu et al. (2015)

no 3 Luong et al. (2015) without input feeding 4 This work

Table 2: The 4 architectures considered in the paper.

(MFS) (Zhang et al., 2015). For completeness, we
include the definition of MFS in App. A.

Morphological Inflection. We consider the
high-resource setting of task 1 in the CoNLL–
SIGMORPHON 2017 shared task (Cotterell et al.,
2017) as our morphological inflection dataset. It
contains 51 languages in the high resource setting.
Morphological inflection transduces a lemma (a
string of characters) and a morphological tag (a se-
quence of subtags) to an inflected form of the word
(a string of characters). We evaluate with word ac-
curacy (ACC) and average edit distance (MLD)
(Cotterell et al., 2017).

8 Experiments

The goal of the empirical portion of our paper is
to perform a controlled study of the different archi-
tectures and approximations discussed up to this
point in the paper. §8.1 exhibits the neural archi-
tectures we compare and the main experimental
results1 are in Tab. 3. In §8.2, we present the exper-
imental minutiae, e.g. hyperparameters. In §8.3, we
analyze our experimental findings. Finally, in §8.4,
we perform error analysis and visualize the soft
attention weight and hard alignment distribution.

8.1 The Architectures

The four architectures we consider in controlled
comparison are: 1 : soft attention with input feed-
ing, 2 : hard attention with input feeding, 3 : soft
attention without input feeding and 4 : hard atten-
tion without input feeding (our system). They are
also shown in Tab. 2. As a fifth system, we com-
pare to the monotonic system M : Aharoni and
Goldberg (2017). Additionally, we present U , a
variant of 1 where the number of parameters is not

1Because we do not have access to the test set of T , we
only report development performance.



Grapheme-to-Phoneme Conversion ( G ) Named-Entity Transliteration ( T ) Morphological Inflection ( I )

Small Large Small Large Small Large

WER PER WER PER ACC MFS ACC MFS ACC MLD ACC MLD

1 33.7 0.080 30.8 0.074 38.9 0.890 39.9 0.893 91.4 0.183 91.1 0.201
U 30.6 0.074 30.4 0.073 39.8 0.891 40.3 0.894 91.0 0.185 91.0 0.212
2 32.3 0.079 33.1 0.081 36.3 0.881 30.8 0.837 91.0 0.193 89.3 0.322
3 30.3 0.074 28.6 0.070 40.1 0.891 40.5 0.894 92.0 0.163 92.2 0.166
4 29.6 0.072 28.2 0.068 39.8 0.891 41.1 0.894 92.6 0.151 93.6 0.128
R 30.7 0.076 29.7 0.074 37.1 0.882 36.9 0.863 91.2 0.190 92.8 0.151
M 33.9 0.082 29.9 0.072 38.8 0.959 40.1 0.960 91.7 0.160 92.8 0.141

Table 3: Average test performance on G , T and I averaged across datasets and languages. See App. B fCor full breakdown.

Small Large Search range

Emb. dim. 100 200 {50,100,200,300}
Enc. dim. 200 400 {100,200,400,600}
Enc. layer 1 2 {1,2,3}
Dec. dim. 200 400 {100,200,400,600}
Dec. layer 1 1 {1,2,3}
Dropout 0.2 0.4 {0,0.1,0.2,0.4}
# param. 1.199M 8.621M N/A

Table 4: Model hyperparameters and search range

controlled for, and R , a variant of 4 trained using
REINFORCE instead of exact marginalization.

8.2 Experimental Details
We implement the experiments with PyTorch
(Paszke et al., 2017) and we port the code of Aha-
roni and Goldberg (2017) to admit batched training.
Because we did not observe any improvements in
preliminary experiments when decoding with beam
search 2, all models are decoded greedily.

Data Preparation. For G , we sample 5% and
10% of the data as development set and test set,
respectively. For T , we only run experiments with
11 out of 14 language pairs3 because we do not
have access to all the data.

Model Hyperparameters. The hyperparameters
of all models are in Tab. 4. The hyperparameters
of the large model are tuned using the baseline 3

on selected languages in I , and the search range is
shown in Tab. 4. All three tasks have the same two
sets of hyperparameters. To ensure that 1 has the
same number of parameters as the other models,
we decrease ds in eq. (9) while for the rest of the

2Compared to greedy decoding with an average error rate
of 20.1% and an average edit distance of 0.385, beam search
with beam size 5 gets a slightly better edit distance of 0.381
while hurting the error rate with 20.2%.

3Ar–En, En–Ba, En–Hi, En–Ja, En–Ka, En–Ko, En–Pe,
En–Ta, En–Th, Jn–Jk and Th–En.

models ds = 3dh. Additionally, we use a linear
mapping to merge e(dec)(yi−1) and c̄i−1 in eq. (14)
instead of concatenation. The output of the linear
mapping has the same dimension as e(dec)(yi−1),
ensuring that the RNN has the same size.

M has quite a different architecture: The input
of the decoder RNN is the concatenation of the pre-
viously predicted word embedding, the encoder’s
hidden state at a specific step, and in the case of I ,
the encoding of the morphological tag. Differing
from Aharoni and Goldberg (2017), we concate-
nate all attributes’ embeddings (0 for attributes that
are not applicable) and merge them with a linear
mapping. The dimension of the merged vector and
attributes vector are de. To ensure that it has the
same number of parameters as the rest of the model,
we increase the hidden size of the decoder RNN.

Optimization. We train the model with Adam
(Kingma and Ba, 2015) with an initial learning
rate of 0.001. We halve the learning rate whenever
the development log-likelihood doesn’t improve.
We stop after the learning rate dips to 1 × 10−5.
We save all models after each epoch and select
the model with best development performance. We
train the model for at most 50 epochs, though all
the experiments stop early. We train on G , T , and
I with batch sizes of 20, 50 and 20, respectively.
We notice in the experiments that the training of
1 and U is quite unstable with the large model,

probably because of the longer chain of gradient
information flow. We apply gradient clipping to the
large model with maximum gradient norm 5.

REINFORCE. In the REINFORCE training of
R and 2 , we sample 2 and 4 positions at each time

step for the small and large model, respectively.
The latter is tuned on selected languages in I with
search range {2,3,4,5}. To stabilize the training, we
apply a baseline with a moving average reward and
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Figure 3: Attention-weight ( 3 ; left) and alignment distribution ( 4 ; right) of Finnish in I . Both models predict correctly.

discount factor of 0.9, similar to Xu et al. (2015).

8.3 Experimental Findings

Finding #1: Effect of Input Feeding. By com-
paring 3 and 4 against 1 and 2 in Tab. 3, we
find input feeding hurts performance in all settings
and all tasks. This runs in contrast to the reported
results of Luong et al. (2015), but they experiment
on machine translation, rather than character-level
transduction. This validates our independence as-
sumption about the alignment distribution.

Finding #2: Soft Attention vs. Hard Attention.
Training with REINFORCE hurts the performance
of the hard attention model; compare 1 and 2

(trained with REINFORCE), in Tab. 3. On the other
hand, training with exact marginalization causes
the hard attention model to outperform soft atten-
tion model in nearly all settings; compare 3 and
4 in Tab. 3. This comparison shows that hard

attention outperforms soft attention in character-
level string transduction when trained with exact
marginalization.

Finding #3: Non-monotonicity vs. Monotonic-
ity. The monotonic model M underperforms
compared to non-monotonic models 3 in Tab. 3
except for one setting. It performs slightly worse
on T and G due to the many-to-one alignments
in the data and the fact that Aharoni and Goldberg
(2017) can only use the hidden vector of the final
element of the span in a many-to-one alignment to
directly predict the one target element. The current
state-of-the-art systems for character-level string
transduction are non-monotonic models, despite
the tasks’ seeming monotonicity; see §8.4.

Finding #4: Approximate Hard Attention.
Given our development of an exact marginalization
method for neural models with hard attention, a
natural question to ask is how much exact marginal-
ization helps during learning. By comparing 4 and
R in Tab. 3, we observe that training with exact

NETtalk CMUDict

3 4 3 4

3 7 3 7 3 7 3 7

Monotonic 18742 1230 18823 1172 95824 17294 96176 17159
Non-monotonic 31 5 12 1 158 162 37 66

Table 5: Breakdown of correct and incorrect predictions of
monotonic and non-monotonic alignments of 3 and 4 in G ,
derived from the soft attention weights and the hard alignment
distribution

marginalization clearly outperforms training under
stochastic approximation in every setting and on
every dataset. We also observe that exact marginal-
ization allows faster convergence, since training
with REINFORCE is quite unstable where some
runs seemingly to get stuck.

Finding #5: Controlling for Parameters. Input
feeding yields a more expressive model, but also
leads to an increase in the number of parameters.
Here, we explore what effect this has on the perfor-
mance of the models. In their ablation, Luong et al.
(2015) did not control the number of parameters
when adding input feeding. The total number of pa-
rameters of U is 1.679M for the small setting and
10.541M for the large setting, which has 40% and
22.3% more parameters than the controlled setting.
By comparing 1 and U in Tab. 3, we find that the
increase in parameters, rather than the increase in
expressivity explains the success of input feeding.

8.4 Visualization and Error Analysis

We hypothesize that even though the model is
non-monotonic, it can learn monotonic alignment
with flexibility if necessary, giving state-of-the-art
results on many seemingly monotonic character-
level string transduction task. To show more in-
sights, we compare the best soft attention model
( 3 ) against the best hard alignment model ( 4 )
on G by showing the confusion matrix of each
model in Tab. 5. An alignment is non-monotonic
when alignment edges predicted by the model cross.
There is an edge connecting xj and yi if the atten-
tion weight or hard alignment distribution αj(i) is



larger than 0.1. We find that the better-performing
transducers are more monotonic, and most learned
alignments are monotonic. The results indicate that
there are a few transductions that are indeed non-
monotonic in the dataset. However, the number
is so few that this does not entirely explain why
non-monotonic models outperform the monotonic
models. We speculate this lies in the architecture
of Aharoni and Goldberg (2017), which does not
permit many-to-one alignments, while monotonic
alignment learned by the non-monotonic model is
more flexible. Future work will investigate this.

In Fig. 3, we visualize the soft attention weights
( 3 ) and the hard alignment distribution ( 4 ) side
by side. We observe that the hard alignment distri-
bution is more interpretable, with a clear boundary
when predicting the prefixes.

9 Conclusion

We exhibit an efficient dynamic program for the
exact marginalization of all non-monotonic align-
ments in a neural sequence-to-sequence model. We
show empirically that exact marginalization helps
over approximate inference by REINFORCE and
that models with hard, non-monotonic alignment
outperform those with soft attention.
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A MFS

LCS(c, r) =
1

2
(|c|+ |r| − ED(c, r))

Ri =
LCS(ci, ri)

|ri|

Pi =
LCS(ci, ri)

|ci|

FSi = 2
Ri × Pi

Ri + Pi

where ri and ci is the i-th reference and prediction,

B Full breakdown of experiments

A full breakdown of G and T can be found in
Tab. 6 and Tab. 7, respectively. A full breakdown
of I can be found in Tab. 8 and Tab. 9.



Small

1 U 2 3 4 R M

WER PER WER PER WER PER WER PER WER PER WER PER WER PER

CMUDict 36.2 0.086 31.0 0.074 35.1 0.083 30.8 0.073 30.5 0.072 31.2 0.074 32.0 0.075
NETtalk 31.2 0.075 30.2 0.075 29.6 0.074 29.8 0.074 28.8 0.073 30.3 0.078 35.7 0.088

Large

1 U 2 3 4 R M

WER PER WER PER WER PER WER PER WER PER WER PER WER PER

CMUDict 32.3 0.076 31.4 0.073 36.7 0.087 30.5 0.073 29.8 0.071 31.8 0.077 30.5 0.072
NETtalk 29.3 0.071 29.4 0.072 29.5 0.075 26.8 0.068 26.6 0.066 27.7 0.071 29.3 0.072

Table 6: Full breakdown of G2P

Small

1 U 2 3 4 R M

ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS

ArEn 54.9 0.954 54.8 0.953 53.9 0.954 53.5 0.951 56.6 0.954 53.9 0.950 60.1 0.980
EnBa 38.4 0.916 38.9 0.915 38.5 0.914 37.6 0.918 39.7 0.918 38.0 0.909 37.4 0.961
EnHi 42.4 0.922 44.0 0.925 40.8 0.921 46.1 0.927 43.8 0.926 43.6 0.924 43.0 0.967
EnJa 40.5 0.871 40.6 0.868 35.4 0.853 41.2 0.872 41.3 0.872 35.2 0.852 39.4 0.952
EnKa 34.8 0.910 35.5 0.912 33.1 0.909 37.8 0.913 36.0 0.909 34.9 0.907 35.6 0.960
EnKo 52.4 0.861 51.8 0.857 49.1 0.850 54.4 0.861 54.9 0.867 48.9 0.849 47.5 0.958
EnPe 28.3 0.899 32.6 0.908 30.8 0.903 34.8 0.911 30.5 0.901 29.6 0.898 34.7 0.964
EnTa 36.8 0.921 38.7 0.925 36.7 0.918 38.5 0.923 36.2 0.923 37.5 0.921 37.5 0.963
EnTh 42.4 0.909 42.6 0.907 37.0 0.892 42.8 0.907 42.1 0.906 37.1 0.890 40.1 0.954
JnJk 18.1 0.717 18.1 0.717 13.4 0.693 15.3 0.706 18.1 0.716 15.5 0.705 12.7 0.933
ThEn 39.2 0.912 40.2 0.913 31.1 0.882 38.9 0.911 38.6 0.912 33.6 0.897 38.3 0.960

Large

1 U 2 3 4 R M

ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS

ArEn 52.2 0.954 54.3 0.954 0.7 0.682 55.4 0.954 55.6 0.953 57.1 0.955 59.7 0.979
EnBa 39.0 0.914 39.2 0.918 40.4 0.917 38.5 0.916 38.2 0.917 37.8 0.912 37.7 0.962
EnHi 42.0 0.923 43.0 0.926 38.9 0.914 45.7 0.929 46.1 0.928 40.7 0.916 45.0 0.968
EnJa 40.8 0.873 40.9 0.872 37.8 0.860 41.6 0.875 40.6 0.872 39.1 0.864 41.1 0.953
EnKa 36.2 0.913 37.9 0.914 35.0 0.909 37.5 0.913 38.6 0.915 38.2 0.913 39.2 0.961
EnKo 53.3 0.868 53.1 0.865 50.7 0.858 53.9 0.866 55.3 0.868 49.7 0.850 50.1 0.961
EnPe 34.0 0.911 34.6 0.913 32.5 0.906 34.2 0.912 35.3 0.911 33.4 0.911 34.3 0.964
EnTa 39.1 0.925 37.6 0.922 32.5 0.901 38.5 0.925 40.2 0.927 37.1 0.919 40.3 0.965
EnTh 43.6 0.910 43.7 0.909 32.5 0.869 43.7 0.909 43.9 0.910 40.0 0.897 41.3 0.955
JnJk 18.1 0.721 18.4 0.721 0.1 0.483 17.2 0.721 17.6 0.720 0.2 0.458 12.6 0.934
ThEn 40.2 0.915 40.3 0.915 37.7 0.909 39.2 0.915 40.3 0.916 32.9 0.897 39.8 0.962

Table 7: Full breakdown of NEWS2015



Small

1 U 2 3 4 R M

ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD

albanian-high 97.2 0.048 98.5 0.023 97.9 0.043 98.1 0.031 98.1 0.045 98.5 0.029 94.5 0.150
arabic-high 89.2 0.396 79.1 0.792 91.0 0.419 90.4 0.360 91.7 0.377 90.2 0.438 89.1 0.340
armenian-high 94.6 0.106 95.3 0.086 90.1 0.214 95.2 0.080 95.5 0.080 93.7 0.126 94.4 0.108
basque-high 100.0 0.000 100.0 0.000 100.0 0.000 99.0 0.010 97.0 0.060 100.0 0.000 95.0 0.140
bengali-high 98.0 0.060 98.0 0.060 99.0 0.030 99.0 0.050 97.0 0.090 98.0 0.080 98.0 0.040
bulgarian-high 88.9 0.165 88.3 0.188 96.1 0.067 94.1 0.101 93.9 0.115 95.4 0.077 96.5 0.058
catalan-high 96.8 0.083 96.9 0.083 96.8 0.075 97.5 0.063 97.2 0.073 97.3 0.068 96.3 0.076
czech-high 90.3 0.170 92.3 0.145 90.6 0.167 91.9 0.157 92.2 0.139 78.2 0.468 91.4 0.152
danish-high 88.9 0.166 88.9 0.174 90.1 0.151 89.1 0.170 90.2 0.148 91.4 0.132 92.6 0.118
dutch-high 93.7 0.112 94.8 0.100 95.2 0.090 95.2 0.090 94.9 0.086 94.2 0.097 94.8 0.093
english-high 96.1 0.077 96.1 0.071 90.4 0.203 96.5 0.074 95.7 0.078 95.3 0.087 96.3 0.062
estonian-high 95.2 0.109 96.0 0.078 96.4 0.070 96.3 0.090 96.8 0.079 96.2 0.091 93.0 0.145
faroese-high 79.9 0.420 79.2 0.390 78.4 0.449 79.5 0.413 82.9 0.365 81.6 0.392 82.5 0.333
finnish-high 86.6 0.318 81.9 0.278 86.5 0.216 88.2 0.202 90.2 0.271 84.1 0.311 86.1 0.227
french-high 84.5 0.291 85.3 0.270 85.2 0.292 83.8 0.317 85.7 0.262 82.3 0.332 86.5 0.253
georgian-high 97.6 0.039 95.4 0.083 97.8 0.037 97.9 0.113 97.5 0.046 98.2 0.039 97.3 0.038
german-high 89.6 0.244 88.4 0.272 88.1 0.282 89.6 0.257 89.3 0.179 83.7 0.381 88.9 0.276
haida-high 97.0 0.040 98.0 0.030 98.0 0.030 99.0 0.020 97.0 0.040 98.0 0.030 92.0 0.150
hebrew-high 99.0 0.010 98.8 0.013 99.1 0.010 97.5 0.027 97.8 0.027 97.8 0.026 98.7 0.016
hindi-high 95.1 0.482 99.9 0.002 100.0 0.000 100.0 0.000 100.0 0.000 100.0 0.000 99.4 0.014
hungarian-high 83.4 0.338 83.9 0.336 85.2 0.333 82.5 0.372 82.3 0.381 83.2 0.444 83.0 0.367
icelandic-high 82.2 0.333 82.0 0.350 84.1 0.305 84.5 0.304 86.3 0.286 84.4 0.296 84.5 0.300
irish-high 87.4 0.387 84.4 0.454 89.0 0.333 87.9 0.351 90.6 0.289 88.3 0.332 88.5 0.335
italian-high 96.1 0.101 87.2 0.251 96.0 0.099 95.5 0.111 95.7 0.106 95.5 0.105 94.6 0.120
khaling-high 99.2 0.008 98.9 0.018 98.7 0.016 98.0 0.030 98.7 0.018 98.7 0.024 98.1 0.028
kurmanji-high 94.2 0.123 93.7 0.101 92.3 0.184 93.2 0.126 93.8 0.098 93.1 0.143 94.0 0.074
latin-high 65.4 0.578 65.9 0.591 69.6 0.516 70.1 0.476 72.1 0.458 68.6 0.503 70.7 0.450
latvian-high 94.7 0.084 95.3 0.071 93.7 0.104 95.1 0.090 95.5 0.081 94.2 0.101 93.6 0.100
lithuanian-high 87.0 0.178 87.8 0.247 84.9 0.233 86.9 0.196 89.1 0.162 87.4 0.201 80.9 0.258
lower-sorbian-high 94.6 0.111 93.7 0.112 94.8 0.100 93.4 0.138 95.2 0.096 94.8 0.103 94.2 0.108
macedonian-high 94.1 0.088 94.2 0.089 95.3 0.073 90.7 0.164 93.6 0.102 94.7 0.087 94.9 0.094
navajo-high 84.9 0.446 84.6 0.461 81.2 0.468 86.2 0.332 88.5 0.268 85.1 0.356 79.8 0.450
northern-sami-high 93.9 0.112 94.2 0.099 94.8 0.125 93.6 0.145 95.4 0.089 93.2 0.143 91.8 0.154
norwegian-bokmal-high 86.4 0.220 87.6 0.293 88.4 0.193 89.7 0.172 90.0 0.158 88.2 0.198 90.9 0.156
norwegian-nynorsk-high 71.8 0.454 78.1 0.363 76.5 0.392 77.9 0.378 77.4 0.379 81.0 0.324 88.4 0.197
persian-high 99.4 0.013 99.4 0.013 99.4 0.012 99.1 0.016 98.9 0.017 99.2 0.017 96.8 0.064
polish-high 89.8 0.245 86.5 0.306 82.2 0.424 90.7 0.237 89.9 0.258 88.9 0.297 90.8 0.198
portuguese-high 98.0 0.032 96.3 0.060 96.4 0.056 98.5 0.034 98.9 0.024 97.9 0.036 98.0 0.034
quechua-high 99.4 0.013 97.9 0.045 98.7 0.040 98.2 0.053 99.6 0.020 98.2 0.058 96.4 0.087
romanian-high 83.3 0.649 83.6 0.454 75.6 0.711 81.6 0.482 84.8 0.432 83.8 0.473 84.8 0.404
russian-high 89.4 0.263 86.8 0.303 71.2 0.960 90.1 0.271 90.1 0.242 87.7 0.312 89.8 0.233
serbo-croatian-high 89.6 0.209 86.8 0.241 89.0 0.244 87.2 0.256 89.5 0.236 89.9 0.225 91.8 0.159
slovak-high 90.5 0.155 89.8 0.168 87.2 0.212 91.3 0.145 89.6 0.163 90.2 0.158 92.6 0.128
slovene-high 94.7 0.101 94.1 0.110 95.3 0.094 96.3 0.070 96.2 0.080 94.9 0.114 95.9 0.068
sorani-high 89.3 0.131 90.0 0.124 89.2 0.127 87.7 0.148 88.4 0.149 88.9 0.143 84.0 0.222
spanish-high 95.9 0.080 94.3 0.104 96.0 0.083 95.1 0.105 95.5 0.099 94.6 0.118 94.2 0.099
swedish-high 87.1 0.212 87.2 0.214 87.8 0.208 88.9 0.167 88.7 0.185 69.6 0.880 90.2 0.165
turkish-high 97.1 0.069 96.9 0.078 95.6 0.104 96.8 0.073 95.4 0.099 95.5 0.127 93.3 0.146
ukrainian-high 90.4 0.171 91.1 0.157 89.0 0.188 90.3 0.168 91.8 0.141 91.6 0.139 92.9 0.111
urdu-high 99.4 0.009 99.6 0.007 99.2 0.012 99.5 0.009 99.4 0.009 99.7 0.005 98.2 0.027
welsh-high 96.0 0.070 96.0 0.080 98.0 0.040 96.0 0.070 99.0 0.030 98.0 0.040 98.0 0.040

Table 8: Full breakdown of SIGMORPHON2017 with small model



Large

1 U 2 3 4 R M

ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD

albanian-high 97.9 0.037 96.3 0.066 98.5 0.024 98.0 0.030 98.5 0.028 98.8 0.021 96.1 0.123
arabic-high 90.4 0.496 89.8 0.397 88.4 0.456 89.8 0.358 92.3 0.352 91.9 0.437 90.8 0.267
armenian-high 94.3 0.112 95.6 0.166 94.3 0.106 94.9 0.078 95.8 0.075 94.6 0.095 93.6 0.110
basque-high 100.0 0.000 100.0 0.000 99.0 0.030 100.0 0.000 100.0 0.000 100.0 0.000 99.0 0.020
bengali-high 99.0 0.020 99.0 0.050 99.0 0.050 99.0 0.050 99.0 0.050 95.0 0.150 98.0 0.050
bulgarian-high 95.0 0.079 91.9 0.129 93.6 0.095 96.5 0.059 96.8 0.052 96.5 0.061 96.8 0.057
catalan-high 95.8 0.102 96.9 0.074 97.1 0.068 96.9 0.064 97.9 0.056 97.4 0.064 96.3 0.074
czech-high 89.2 0.184 87.4 0.209 87.8 0.241 90.7 0.176 92.7 0.133 89.7 0.188 92.0 0.140
danish-high 88.3 0.167 87.0 0.282 89.3 0.166 88.6 0.159 91.9 0.121 91.7 0.127 92.2 0.121
dutch-high 93.9 0.109 93.3 0.120 94.2 0.107 94.6 0.099 95.7 0.082 95.8 0.075 95.6 0.078
english-high 95.9 0.082 95.7 0.239 93.1 0.151 95.5 0.081 96.3 0.069 96.0 0.078 96.4 0.055
estonian-high 95.5 0.235 96.9 0.069 96.7 0.069 96.3 0.082 97.6 0.064 96.1 0.086 92.7 0.140
faroese-high 80.8 0.388 80.7 0.468 80.1 0.374 83.0 0.365 84.3 0.327 82.3 0.371 84.5 0.314
finnish-high 89.7 0.323 86.5 0.196 26.2 4.562 88.5 0.212 92.2 0.137 90.4 0.169 88.0 0.197
french-high 82.2 0.329 83.3 0.316 84.0 0.305 82.9 0.335 85.5 0.274 84.7 0.296 85.6 0.273
georgian-high 97.5 0.043 96.8 0.060 96.9 0.056 96.8 0.064 98.2 0.027 98.4 0.022 98.6 0.018
german-high 87.7 0.459 82.4 0.505 76.5 0.751 87.4 0.309 91.3 0.141 88.7 0.233 89.4 0.244
haida-high 98.0 0.030 98.0 0.030 98.0 0.030 97.0 0.040 98.0 0.030 98.0 0.030 95.0 0.100
hebrew-high 98.5 0.019 99.1 0.011 98.5 0.017 98.6 0.015 98.4 0.018 98.7 0.016 98.5 0.018
hindi-high 100.0 0.000 99.7 0.099 99.9 0.001 99.8 0.002 99.9 0.003 100.0 0.000 99.8 0.006
hungarian-high 82.7 0.361 82.0 0.362 81.7 0.400 79.0 0.437 84.1 0.347 82.0 0.386 84.7 0.329
icelandic-high 82.6 0.341 84.4 0.309 82.9 0.338 84.7 0.301 88.0 0.244 87.6 0.248 87.6 0.245
irish-high 85.8 0.377 86.4 0.391 81.8 0.512 88.7 0.423 90.5 0.254 88.3 0.344 89.6 0.304
italian-high 95.8 0.101 96.1 0.089 95.6 0.113 96.6 0.081 96.5 0.084 96.2 0.091 96.0 0.104
khaling-high 99.4 0.006 99.2 0.009 99.4 0.006 99.3 0.009 99.5 0.005 99.4 0.009 97.8 0.031
kurmanji-high 93.0 0.162 93.2 0.268 91.3 0.183 93.1 0.128 93.0 0.089 92.7 0.146 94.0 0.076
latin-high 71.6 0.518 69.6 0.513 70.4 0.485 78.0 0.371 78.4 0.361 76.2 0.392 74.7 0.378
latvian-high 80.8 0.524 91.5 0.133 94.6 0.095 94.3 0.097 96.3 0.056 95.7 0.078 95.2 0.068
lithuanian-high 86.4 0.368 85.4 0.394 87.9 0.173 89.7 0.150 90.6 0.126 90.7 0.139 89.4 0.149
lower-sorbian-high 93.9 0.118 93.7 0.208 95.2 0.094 95.2 0.094 95.1 0.100 96.3 0.073 95.6 0.083
macedonian-high 90.8 0.126 92.7 0.111 94.4 0.085 93.7 0.097 95.9 0.067 94.6 0.085 93.8 0.110
navajo-high 88.1 0.268 86.9 0.312 90.8 0.198 88.3 0.435 91.3 0.201 88.6 0.279 84.5 0.359
northern-sami-high 94.9 0.129 95.8 0.082 95.3 0.121 95.9 0.087 97.5 0.075 96.4 0.103 95.0 0.090
norwegian-bokmal-high 84.4 0.331 85.1 0.403 88.4 0.272 88.1 0.199 88.7 0.190 89.6 0.178 91.0 0.152
norwegian-nynorsk-high 73.3 0.440 76.2 0.408 78.2 0.376 79.4 0.354 80.4 0.345 82.6 0.314 89.3 0.182
persian-high 99.6 0.006 99.2 0.011 99.3 0.108 99.5 0.014 99.3 0.014 99.6 0.011 96.7 0.066
polish-high 85.3 0.406 85.7 0.369 88.5 0.282 88.4 0.366 89.7 0.248 89.2 0.251 90.2 0.193
portuguese-high 97.4 0.041 97.4 0.042 98.2 0.034 97.9 0.037 98.3 0.032 98.9 0.023 98.8 0.028
quechua-high 98.9 0.019 97.9 0.059 97.8 0.048 98.6 0.037 98.9 0.032 98.8 0.037 97.7 0.057
romanian-high 84.9 0.594 83.4 0.568 47.1 2.794 85.1 0.457 86.7 0.400 86.8 0.422 86.4 0.450
russian-high 88.0 0.353 85.8 0.458 86.9 0.324 89.8 0.432 90.5 0.244 90.3 0.244 91.2 0.220
serbo-croatian-high 84.9 0.307 85.0 0.277 88.8 0.323 88.8 0.236 90.9 0.187 82.0 0.426 91.4 0.185
slovak-high 87.7 0.214 89.4 0.270 89.2 0.264 89.6 0.186 92.1 0.126 90.4 0.163 92.6 0.129
slovene-high 94.6 0.096 93.2 0.222 94.6 0.102 95.2 0.078 96.1 0.073 94.9 0.097 96.4 0.063
sorani-high 88.8 0.138 88.4 0.144 88.9 0.133 89.4 0.123 90.3 0.121 90.1 0.120 85.9 0.180
spanish-high 94.3 0.092 95.8 0.163 96.1 0.072 96.1 0.075 96.7 0.056 96.2 0.072 95.4 0.079
swedish-high 85.7 0.237 85.0 0.329 79.4 0.529 85.9 0.235 90.9 0.157 89.6 0.170 92.2 0.132
turkish-high 95.9 0.103 94.9 0.226 94.8 0.118 92.4 0.172 97.0 0.063 94.8 0.121 94.3 0.128
ukrainian-high 90.4 0.170 90.3 0.161 90.8 0.148 92.5 0.126 92.9 0.116 93.1 0.114 91.4 0.144
urdu-high 99.3 0.012 99.4 0.010 99.0 0.015 99.6 0.007 99.3 0.014 99.6 0.006 99.1 0.013
welsh-high 96.0 0.060 98.0 0.050 98.0 0.040 97.0 0.050 97.0 0.070 97.0 0.060 97.0 0.060

Table 9: Full breakdown of SIGMORPHON2017 with large model



C Errata

• In section §3.2, O(Σy) should have read O(|Σy|).

• The set of all alignments between strings x and y was denoted A(x,y) at times throughout the paper.
For simplicitly, this set is now consistently denoted A.

• In §5.2, eq. (16) was missing a a to the right of the bar due to a macro failure.

• Several equations were reformatted to occupy multiple lines for aesthetic reasons.

• Infelicities in the bibliography were fixed.


