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Abstract

The transformer (Vaswani et al., 2017) has
been shown to outperform recurrent neural
network-based sequence-to-sequence models
in various word-level NLP tasks. Yet for
character-level transduction tasks, e.g. mor-
phological inflection generation and histori-
cal text normalization, there are few works
that outperform recurrent models using the
transformer. In an empirical study, we un-
cover that, in contrast to recurrent sequence-
to-sequence models, the batch size plays a
crucial role in the performance of the trans-
former on character-level tasks, and we show
that with a large enough batch size, the trans-
former does indeed outperform recurrent mod-
els. We also introduce a simple technique
to handle feature-guided character-level trans-
duction that further improves performance.
With these insights, we achieve state-of-the-art
performance on morphological inflection and
historical text normalization. We also show
that the transformer outperforms a strong base-
line on two other character-level transduction
tasks: grapheme-to-phoneme conversion and
transliteration.

1 Introduction

The transformer (Vaswani et al., 2017) has become
a popular architecture for sequence-to-sequence
transduction in NLP. It has achieved state-of-the-
art performance on a range of common word-level
transduction tasks: neural machine translation (Bar-
rault et al., 2019), question answering (Devlin et al.,
2019) and abstractive summarization (Dong et al.,
2019). In addition, the transformer forms the back-
bone of the widely-used BERT (Devlin et al., 2019).
Yet for character-level transduction tasks like mor-
phological inflection, the dominant model has re-
mained a recurrent neural network-based sequence-

Code will be available at https://github.com/
shijie-wu/neural-transducer.
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Figure 1: Development set accuracy for 5 languages
on morphological inflection with different batch sizes.
We evince our two primary contributions: (1) we set the
new state of the art morphological inflection using the
transformer and (2) we demonstrate the transformer’s
dependence on the batch size.

to-sequence model with attention (Cotterell et al.,
2018). This is not for lack of effort—but rather, it is
the case that the transformer has consistently under-
performed in experiments on average (Tang et al.,
2018b).1 As anecdotal evidence of this, we note
that in the 2019 SIGMORPHON shared task on
cross-lingual transfer for morphological inflection,
no participating system was based on the trans-
former (McCarthy et al., 2019).

Character-level transduction models are often
trained with less data than their word-level coun-
terparts: In contrast to machine translation, where
millions of training samples are available, the 2018
SIGMORPHON shared task (Cotterell et al., 2018)
high-resource setting only provides ≈ 10k training
examples per language. It is also not obvious that
non-recurrent architectures such as the transformer

1This claim is also based on the authors’ personal commu-
nication with other researchers in morphology in the corridors
of conferences and through email.
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Figure 2: Handling of feature-guided character-level transduction with special position and type embeddings in the
encoder. F denotes features while C denotes characters. We use morphological inflection as an example, inflecting
smear into its past participle form, smeared.

should provide an advantage at many character-
level tasks: For instance, Gehring et al. (2017) and
Vaswani et al. (2017) suggest that transformers (and
convolutional models in general) should be better
at remembering long-range dependencies. In the
case of morphology, none of these considerations
seem relevant: inflecting a word (a) requires little
capacity to model long-distance dependencies and
is largely a monotonic transduction; (b) it involves
no semantic disambiguation, the tokens in question
being letters; (c) it is not a task for which paral-
lelization during training appears to help, since
training time has never been an issue in morphol-
ogy tasks.2

In this work, we provide state-of-the-art num-
bers for morphological inflection and historical
text normalization, a novel result in the litera-
ture. We also show the transformer outperforms
a strong recurrent baseline on two other character-
level tasks: grapheme-to-phoneme (g2p) conver-
sion and transliteration. We find that a single hy-
perparameter, batch size, is largely responsible for
the previous poor results. Despite having fewer pa-
rameters, the transformer outperforms the recurrent
sequence-to-sequence baselines on all four tasks.
We conduct a short error analysis on the task of
morphological inflection to round out the paper.

2 The Transformer for Characters

The Transformer. The transformer, originally
described by Vaswani et al. (2017), is a self-
attention-based encoder-decoder model. The en-
coder has N layers, consisting of a multi-head self-
attention layer and a two-layer feed-forward layer
with ReLU activation, both equipped with a skip
connection. The decoder has a similar structure
as the encoder except that, in each decoder layer

2Many successful CoNLL–SIGMORPHON shared task
participants report training their models on laptop CPUs.

between the self-attention layer and feed-forward
layer, a multi-head attention layer attends to the
output of the encoder. Layer normalization (Ba
et al., 2016) is applied to the output of each skip
connection. Sinusoidal positional embeddings are
used to incorporate positional information without
the need for recurrence or convolution. Here, we
describe two modifications we make to the trans-
former for character-level tasks.

A Smaller Transformer. As the dataset sizes in
character-level transduction tasks are significantly
smaller than in machine translation, we employ a
smaller transformer with N = 4 encoder-decoder
layers. We use 4 self-attention heads. The em-
bedding size is dmodel = 256 and the hidden size
of the feed-forward layer is dFF = 1024. In
the preliminary experiments, we found that using
layer normalization before self-attention and the
feed-forward layer performed slightly better than
the original model. It is also the default setting
of a popular implementation of the transformer
(Vaswani et al., 2018). The transformer alone has
around 7.37M parameters, excluding character em-
beddings and the linear mapping before the softmax
layer. We decode the model left to right in a greedy
fashion.

Feature Invariance. Some character-level trans-
duction is guided by features. For example, in
the case of morphological reinflection, the task re-
quires a set of morphological attributes that control
what form a citation form is inflected into (see
Fig. 2 for an example). However, the order of the
features is irrelevant. In a recurrent neural network,
features are input in some predefined order as spe-
cial characters and pre- or postpended to the input
character sequence representing the citation form.
The same is true for a vanilla transformer model, as
shown on the left-hand side of Fig. 2. This leads to



LS β2 Vanilla Feature Invariant

0 0.999 89.34 89.80
0 0.98 89.62 89.92
0.1 0.999 89.48 90.02
0.1 0.98 89.98 90.28

Table 1: Average development accuracy on morpho-
logical inflection with different LS and β2, which de-
note hyperparameter of label smoothing and Adam op-
timizer respectively.

different relative distances between a character and
a set of features.3 To avoid such an inconsistency,
we propose a simple remedy: We set the positional
encoding of features to 0 and only start counting
the positions for characters. Additionally, we add
a special token to indicate whether a symbol is a
word character or a feature. The right-hand side
of Fig. 2 evinces how we have the same relative
distance between characters and features.

3 Empirical Findings

Tasks. We consider four character-level transduc-
tion tasks: morphological inflection, grapheme-to-
phoneme conversion, transliteration, and historical
text normalization. For morphological inflection,
we use the 2017 SIGMORPHON shared task data
(Cotterell et al., 2017) with 52 languages. The
performance is evaluated by accuracy (ACC) and
edit distance (Dist). For the g2p task, we use the
unstressed CMUDict (Weide, 1998) and NETtalk
(Sejnowski and Rosenberg, 1987) resources. We
use the splits from Wu et al. (2018). We evaluate un-
der word error rate (WER) and phoneme error rate
(PER). For transliteration, we use the NEWS 2015
shared task data (Zhang et al., 2015).4 For histori-
cal text normalization, we follow Bollmann (2019)
and use datasets for Spanish (Sánchez-Martı́nez
et al., 2013), Icelandic and Swedish (Pettersson
et al., 2013), Slovene (Scherrer and Erjavec, 2013,
2016; Ljubešic et al., 2016), Hungarian and Ger-
man (Pettersson, 2016).5 We evaluate using accu-
racy (ACC) and character error rate of incorrect
prediction (CERi).

Optimization. We use Adam (Kingma and Ba,
2014) with a learning rate of 0.001 and an inverse

3While the features could be encoded with a binary vector
followed by MLP, it introduces a representation bottleneck for
encoding features.

4We do not have access to the test set.
5We do not include English due to licensing issues.

Figure 3: Distribution of incorrectly inflected forms in
the test set of the inflection task over all 52 languages
grouped by desired output word length.

square root learning rate scheduler (Vaswani et al.,
2017) with 4k steps during the warm-up. We train
the model for 20k gradient updates and save and
evaluate the model every 400 gradient updates. We
select the best model out of 50 checkpoints based
on development set accuracy. The number of gradi-
ent updates and checkpoints are roughly the same
as Wu and Cotterell (2019), the single model state
of the art on the 2017 SIGMORPHON dataset. We
use their model as a baseline model. For all experi-
ments, we use a single predefined random seed.

3.1 A Controlled Hyperparameter Study

To demonstrate the importance of hyperparame-
ter tuning for the transformer on character-level
tasks, we perform a small controlled hyperparame-
ter study. This is important since researchers had
previously failed to achieve high-performing re-
sults with the transformer on character-level tasks.
Here, we look at morphological inflection on the
five languages in the 2017 SIGMORPHON dataset
where submitted systems performed the worst:
Latin, Faroese, French, Hungarian, and Norwegian
(Nynorsk). We set the dropout to 0.3, β2 of Adam
to 0.999 (the default value), and do not use label
smoothing. We do not tune any other hyperparam-
eter except the following three hyperparameters.

The Importance of Batch Size. While recurrent
models like Wu and Cotterell use a batch size of 20,
halving the learning rate when stuck and employ-
ing early stopping, we find that a less aggressive
learning rate scheduler, allowing the model to train
longer, outperforms these hyperparameters. Fig. 1
shows that the significant impact of batch size on
the transformer. The transformer performance in-



ACC Dist

Silfverberg et al. (2017)* 92.97 0.170
Wu et al. (2018) 93.60 0.128
Wu and Cotterell (2019) 94.40 0.113
Wu and Cotterell (2019) (Our eval) 94.81 0.123
Makarov et al. (2017)* 95.12 0.100
Bergmanis et al. (2017)* 95.32 0.100

Transformer (Dropout = 0.3) 95.59 0.088
Transformer (Dropout = 0.1) 95.56 0.090

Table 2: Average test performance on morphological
inflection of Transformer against models from the liter-
ature. ∗ denotes model ensembling.

creases steadily as the batch size is increased, sim-
ilarly to what Popel and Bojar (2018) observe for
machine translation. The transformer only outper-
forms the recurrent baseline when the batch size is
at least 128, which is much larger than batch size
commonly used in recurrent models.6 Note that the
model of Wu and Cotterell has 8.66M parameters,
17% more than the transformer model. To get an
apples-to-apples comparison, we apply the same
learning rate scheduler to Wu and Cotterell; this
does not yield similar improvements and underper-
forms with respect to the traditional learning rate
scheduler. Our feature invariant transformer also
outperforms the vanilla transformer model. We
set the batch size to 400 for our main experiments.
Note the batch size of 400 is especially large (4%
of training data) considering the training size is
only 10k.

Other Hyperparameters. Vaswani et al. (2017)
applies label smoothing (Szegedy et al., 2016) of
0.1 to the transformer model and shows that it hurts
perplexity, but improves BLEU scores for machine
translation. Instead of the default 0.999 β2 for
Adam, Vaswani et al. (2017) uses 0.98 and we find
that both choices benefit character-level transduc-
tion tasks as well (see Tab. 1).

3.2 New State-of-the-Art Results

We train our feature invariant transformer on the
four character-level tasks, exhibiting state-of-the-
art results on morphological inflection and histori-
cal text normalization.

6It is also large in the context of character-level tasks,
which typically have around 10k training examples. Batch
size of 400 would imply approximately 4% of training data in
a single gradient update.

ACC CERi ACCs CERs
i

Ljubešić et al. (2016) 91.78 0.392 90.37 0.360
Ljubešić et al. (2016) (LM) 91.56 0.399 89.93 0.368
Bollmann (2018) 91.27 0.381 89.73 0.350
Tang et al. (2018a) 91.67 0.389 90.32 0.358
Flachs et al. (2019) - - 90.06 -

Transformer (Dropout = 0.3) 91.30 0.340 89.99 0.330
Transformer (Dropout = 0.1) 91.85 0.352 90.61 0.334

Table 3: Average test performance on historical text
normalization of Transformer against models from the
literature. s denote subset of dataset as Flachs et al.
(2019) only experiment with subset of languages.

WER PER ACC MFS

Wu et al. (2018) 28.20 0.068 41.10 0.894
Wu and Cotterell (2019) 28.20 0.069 41.20 0.895

Transformer (Dropout = 0.3) 28.08 0.070 43.39 0.897
Transformer (Dropout = 0.1) 27.63 0.069 41.35 0.891

Table 4: Average test performance on Grapheme-to-
Phoneme and dev performance on Transliteration of
Transformer against models from the literature.

Morphological Inflection. As shown in Tab. 2,
the feature invariant transformer produces state-of-
the-art results on the 2017 SIGMORPHON shared
tasks, improving upon ensemble-based systems by
0.27 points. We observe that as the dataset de-
creases in size, a model with a larger dropout value
performs slightly better. A brief tally of phenomena
that are difficult to learn for many machine learn-
ing models, categorized along typical linguistic
dimensions (such as word-internal sound changes,
vowel harmony, circumfixation, ablaut, and umlaut
phenomena) fail to reveal any consistent pattern of
advantage to the transformer model. In fact, errors
seem to be randomly distributed with an overall ad-
vantage of the transformer model. Curiously, errors
grouped along the dimension of word length reveal
that as word forms grow longer, the transformer
advantage shrinks (Fig. 3).

Historical Text Normalization. Tab. 3 shows
that the transformer model with dropout of 0.1, as
in the case of morphological inflection, improves
upon the previous state of the art, although the
model with a dropout of 0.3 yields a slightly better
CERi.

G2P and Transliteration. Tab. 4 shows that
the transformer outperforms previously published
strong recurrent models on two tasks despite hav-
ing fewer parameters. A dropout rate of 0.3 yields



significantly better performance on the translitera-
tion task while a dropout rate of 0.1 is stronger on
the g2p task. This shows that transformers can and
do outperform recurrent transducers on common
character-level tasks when properly tuned.

4 Related Work

Character-level transduction is largely dominated
by attention-based LSTM sequence-to-sequence
(Luong et al., 2015) models (Cotterell et al., 2018).
Character-level transduction tasks usually involve
input-output pairs that share large substrings and
alignments between these are often monotonic.
Models that address the task tend to focus on ex-
ploiting such structural bias. Instead of learning
the alignments, Aharoni and Goldberg (2017) use
external monotonic alignments from the SIGMOR-
PHON 2016 shared task baseline Cotterell et al.
(2016). Makarov et al. (2017) use this approach
to win the CoNLL-SIGMORPHON 2017 shared
task on morphological inflection (Cotterell et al.,
2017). Wu et al. (2018) shows that explicitly model-
ing alignment (hard attention) between source and
target characters outperforms soft attention. Wu
and Cotterell (2019) further shows that enforcing
monotonicity in a hard attention model improves
performance.

5 Conclusion

Using a large batch size and feature invariant input
allows the transformer to achieve strong perfor-
mance on character-level tasks. However, it is un-
clear what linguistic errors the transformer makes
compared to recurrent models on these tasks. Fu-
ture work should analyze the errors in detail as
Gorman et al. (2019) does for recurrent models.
While Wu and Cotterell shows that the monotonic-
ity bias benefits character-level tasks, it is not evi-
dent how to enforce monotonicity on multi-headed
self-attention. Future work should consider how
to best incorporate monotonicity into the model,
either by enforcing it strictly (Wu and Cotterell,
2019) or by pretraining the model to copy (Anasta-
sopoulos and Neubig, 2019).
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