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Abstract

Derivational morphology is a fundamen-
tal and complex characteristic of language.
In this paper we propose the new task of
predicting the derivational form of a given
base-form lemma that is appropriate for
a given context. We present an encoder-
decoder style neural network to produce a
derived form character-by-character, based
on its corresponding character-level repre-
sentation of the base form and the context.
We demonstrate that our model is able to
generate valid context-sensitive derivations
from known base forms, but is less accurate
under a lexicon agnostic setting.

1 Introduction

Understanding how new words are formed is a
fundamental task in linguistics and language mod-
elling, with significant implications for tasks with
a generation component, such as abstractive sum-
marisation and machine translation. In this paper
we focus on modelling derivational morphology, to
learn, e.g., that the appropriate derivational form of
the verb succeed is succession given the context As
third in the line of ..., butis success in The
play was a great .

English is broadly considered to be a morpho-
logically impoverished language, and there are cer-
tainly many regularities in morphological patterns,
e.g., the common usage of -able to transform a verb
into an adjective, or -Iy to form an adverb from an
adjective. However there is considerable subtlety
in English derivational morphology, in the form
of: (a) idiosyncratic derivations; e.g. picturesque
vs. beautiful vs. splendid as adjectival forms of
the nouns picture, beauty and splendour, respec-
tively; (b) derivational generation in context, which
requires the automatic determination of the part-

of-speech (POS) of the stem and the likely POS
of the word in context, and POS-specific deriva-
tional rules; and (c) multiple derivational forms
often exist for a given stem, and these must be se-
lected between based on the context (e.g. success
and succession as nominal forms of success, as
seen above). As such, there are many aspects that
affect the choice of derivational transformation, in-
cluding morphotactics, phonology, semantics or
even etymological characteristics. Earlier works
(Thorndike, 1941) analysed ambiguity of deriva-
tional suffixes themselves when the same suffix
might present different semantics depending on the
base form it is attached to (cf. beautiful vs. cup-
ful). Furthermore, as Richardson (1977) previously
noted, even words with quite similar semantics and
orthography such as horror and terror might have
non-overlapping patterns: although we observe reg-
ularity in some common forms, for example, hor-
rify and terrify, and horrible and terrible, nothing
tells us why we observe terrorize and no instances
of horrorize, or horrid, but not terrid.

In this paper, we propose the new task of pre-
dicting a derived form from its context and a base
form. Our motivation in this research is primarily
linguistic, i.e. we measure the degree to which it
is possible to predict particular derivation forms
from context. A similar task has been proposed in
the context of studying how children master deriva-
tions (Singson et al., 2000). In their work, children
were asked to complete a sentence by choosing
one of four possible derivations. Each derivation
corresponded either to a noun, verb, adjective, or
adverbial form. Singson et al. (2000) showed that
childrens’ ability to recognize the correct form cor-
relates with their reading ability. This observation
confirms an earlier idea that orthographical regular-
ities provide a clearer clues to morphological trans-
formations comparing to phonological rules (Tem-
pleton, 1980; Moskowitz, 1973), especially in lan-



guages such as English where grapheme-phoneme
correspondences are opaque. For this reason we
consider orthographic rather than phonological rep-
resentations.

In our approach, we test how well models in-
corporating distributional semantics can capture
derivational transformations. Deep learning mod-
els capable of learning real-valued word embed-
dings have been shown to perform well on a range
of tasks, from language modelling (Mikolov et al.,
2013a) to parsing (Dyer et al., 2015) and machine
translation (Bahdanau et al., 2015). Recently, these
models have also been successfully applied to mor-
phological reinflection tasks (Kann and Schiitze,
2016; Cotterell et al., 2016a).

2 Derivational Morphology

Two important goals of morphology, the linguistic
study of the internal structure of words, are to de-
scribe the relation between different words in the
lexicon and to decompose them into morphemes,
the smallest linguistic unit bearing meaning. Mor-
phology can be divided into two types: inflectional
and derivational. Inflectional morphology is the
set of processes through which the word form out-
wardly displays syntactic information, e.g., verb
tense. It follows that an inflectional affix typically
neither changes the part-of-speech (POS) nor the
semantics of the word. For example, the English
verb fo run takes various forms: run, runs and ran,
all of which convey the concept “moving by foot
quickly”, but appear in complementary syntactic
contexts.

Derivation, on the other hand, deals with the
formation of new words that have semantic shifts
in meaning (often including POS) and is tightly
intertwined with lexical semantics (Light, 1996).
Consider the example of the English noun discon-
tentedness, which is derived from the adjective
discontented. 1t is true that both words share a
close semantic relationship, but the transformation
is clearly more than a simple inflectional marking
of syntax. Indeed, we can go one step further and
define a chain of words content — contented —
discontented — discontentedness.

In this work, we deal with the formation of dever-
bal nouns, i.e., nouns that are formed from verbs.
Common examples of this in English include agen-
tives, e.g., explain — explainer, gerunds, e.g., ex-
plain — explaining as well as other nominaliza-
tions, e.g., explain — explanation. These nominal-
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Figure 1: The encoder-decoder model, showing the stem dev-
astate in context producing the form devastation. Coloured
arrows indicate shared parameters.

izations all have drastically different meanings—a
key focus of our study is the prediction of which
form is most appropriate depending on the context.
We expect that our model is general and could be
deployed on other related lexical problems.

3 Related Work

Although in the last few years many neural morpho-
logical models have been proposed, most of them
have focused on inflectional morphology; see Cot-
terell et al. (2016a) for an overview of the state of
the art. Focusing on derivational processes, there
are three main directions of research. The first
deals with evaluation of word embeddings either
using a word analogy task (Gladkova et al., 2016)
or binary relation type classification (Vylomova et
al., 2016). And it has been shown that, unlike in-
flectional morphology, most derivational relations
cannot be as easily captured using distributional
methods. Researchers working on the second type
of task attempt to predict derived forms using the
embedding of its corresponding base form and a
vector encoding a “derivational” shift. Guevara
(2011) notes that derivational affixes can be mod-
elled as a geometrical function over the vectors of
the base forms. On the other hand, Lazaridou et
al. (2013) and Cotterell and Schiitze (2017) rep-
resent derivational affixes as vectors and investi-
gate various functions to combine them with base
forms. Kisselew et al. (2015) and Padé et al. (2016)
extend this line of research to model derivational



morphology in German. Their study demonstrates
that various factors such as part of speech, seman-
tic regularity and argument structure (Grimshaw,
1990) influence predictability of a derived word.
The third area of research focuses on the analy-
sis of derivationally complex forms, which differs
from study in that we focus on generation. The goal
of this line of work is to produce a canonicalized
segmentation of an input word into its constituent
morphs, e.g., unhappiness— un-+happy+ness (Cot-
terell et al., 2015; Cotterell et al., 2016b). Note that
the orthographic change y—i has been reversed.

4 Dataset

As the starting point for the construction of our
dataset, we used the CELEX English dataset
(Baayen et al., 1993). We extracted verb—noun
lemma pairs from CELEX, covering 24 differ-
ent nominalisational suffixes and 1,456 base lem-
mas. Suffixes only occurring in 5 or fewer lemma
pairs mainly corresponded to loan words and con-
sequently were filtered out. We augmented this
dataset with verb—verb pairs, one for each verb
present in the verb—noun pairs, to capture the case
of a verbal form being appropriate for the given
context.! For each noun and verb lemma, we gener-
ated all their inflections, and searched for sentential
contexts of each inflected token in a pre-tokenised
dump of English Wikipedia.> To dampen the effect
of high-frequency words, we applied a heuristic log
function threshold which is basically a weighted
logarithm of the number of the contexts. The final
dataset contains 3,079 unique lemma pairs repre-
sented in 107,041 contextual instances.’

S Experiments

In this paper we model derivational morphology
as a prediction task, formulated as follows. We
take sentences containing a derivational form of a
given lemma, then obscure the derivational form by
replacing it with its base form lemma. The system
must then predict the original (derivational) form,
which may make use of the sentential context. Sys-
tem predictions are judged correct if they exactly
match the original derived form.

"'We experimented without verb—verb pairs and didn’t ob-
serve much difference in the results.

*Based on a 2008/03/12 dump. Sentences shorter than 3
words or longer than 50 words were removed from the dataset.

*The code and the dataset are available at https://
github.com/ivri/dmorph

5.1 Baseline

As a baseline we considered a trigram model with
modified Kneser-Ney smoothing, trained on the
training partition. Each sentence in the testing
data was augmented with a set of confabulated sen-
tences, where we replaced a target word with other
its derivations or a base form. Unlike the general
task, where we generate word forms as character
sequences, here we use a set of known inflected
forms for each lemma. We then use the language
model to score the collections of test sentences,
and selected the variant with the highest language
model score, and evaluate accuracy of selecting the
original word form.

5.2 Encoder-Decoder Model

We propose an encoder-decoder model. The en-
coder combines the left and the right contexts as
well as a character-level base form representation:

t = max (0, H - [Ayef; hugg; Efght; 1$ght;
hl;;se; ht;se] + bh)a (D

— +— — — — —
where h’left7 h‘left7 right> ’“right> h’base’h’base corre-

spond to the last hidden states of an LSTM (Hochre-
iter and Schmidhuber, 1997) over left and right
contexts and the character-level representation of
the base form (in each case, applied forwards and
backwards), respectively; H € RI1>1x1.5,hxIx6] g
a weight matrix, and by, € RI"**15] ig a bias term.
;] denotes a vector concatenation operation, h is
the hidden state dimensionality, and [ is the number
of layers.

Next we add an extra affine transformation, o =
T -t + b, where T € RIWXIXL5hXU and b, e
R[hxu, then o is then fed into the decoder:

g(¢j+1lej, 0,1j41) = @)
softmax(R - ¢; + max (B - 0,5 - lj11) + bg),

where ¢; is an embedding of the j-th character of
the derivation, l; 1 is an embedding of the corre-
sponding base character, B, S, R are weight matri-
ces, and b, is a bias term.

We now elaborate on the design choices behind
the model architecture, which have been tailored to
our task. We supply the model with the /41 char-
acter to enable a copying mechanism, otherwise
the model might produce a word prefix which is
different from its stem. In most cases the derived
form is longer than its stem, and accordingly, when
we reach the end of the base form, we continue to



Shared Split
baseline 0.63 -
biLSTM+BS 0.58 0.36
biLSTM+CTX 0.80 0.45
biLSTM+CTX+BS 0.83 0.52
biLSTM+CTX+BS+POS 0.89 0.63
LSTM+CTX+BS+POS 0.90 0.66

Table 1: Accuracy for predicted lemmas (bases and deriva-
tions) on shared and split lexicons

input a end-of-word symbol. We provide the model
with the context vector o at each decoding step. It
has been previously shown (Hoang et al., 2016)
that this yields better results than other means of
incorporation.* Finally, we use max pooling to
enable the model to switch between copying of a
stem or producing a new character.

5.3 Settings

We used a 3-layer bidirectional LSTM network,
with hidden dimensionality s for both context
and base-form stem states of 100, and charac-
ter embedding ¢; of 100.> We used pre-trained
300-dimensional Google News word embeddings
(Mikolov et al., 2013a; Mikolov et al., 2013b). Dur-
ing the training of the model, we keep the word em-
beddings fixed, for greater applicability to unseen
test instances. All tokens that didn’t appear in this
set were replaced with UNK sentinel tokens. The
network was trained using SGD with momentum
until convergence.

5.4 Results

With the encoder-decoder model, we experimented
with the encoder-decoder, “biLSTM+CTX+BS”,
as described in §5.2, as well as several vari-
ations, namely: excluding context information
(“biLSTM+BS™), and excluding the bidirectional
stem (“biLSTM+CTX”). We also investigated how
much improvement we can get from knowing the
POS tag of the derived form, by presenting it ex-
plicitly to the model as extra conditioning context
(“biLSTM+CTX+BS+P0S”). The main motiva-
tion for this relates to gerunds, where without the
POS, the model often overgenerates nominalisa-
tions. We then tried a single-directional context
representation, by using only the last hidden states,

i.e., hyp and b, corresponding to the words to
*We tried to feed the context information at the initial step
only, and this led to worse prediction in terms of context-aware
suffixes.
SWe also experimented with 15 dimensions, but found this
model to perform worse.
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Figure 2: An example of t-SNE projection (Maaten and Hin-
ton, 2008) of context representations for “simulate” base
form.

the immediate left and right of the wordform to be
predicted (“LSTM+CTX+BS+P0OS”).

We ran two experiments: first, a shared lexicon
experiment, where every stem in the test data was
present in the training data; and second, using a
split lexicon, where every stem in the test data was
unseen in the training data. The results are pre-
sented in Table 1, and show that: context has a
strong impact on results, particularly in the shared
lexicon case; there is strong complementarity be-
tween the context and character representations,
particularly in the split lexicon case; and POS in-
formation is particularly helpful in the split lexicon
case. Note that most of the models significantly out-
perform our baseline under shared lexicon setting.
The baseline model doesn’t allow split lexicon set-
ting, so we cannot do any comparison at this point.

5.5 Error Analysis

We carried out error analysis over the produced
forms of the LSTM+CTX+BS+P0OS model. First,
the model sometimes struggles to differentiate be-
tween nominal suffixes: in some cases it puts an
agentive suffix (-er or -or) in contexts where a non-
agentive nominalisation (e.g. -ation or -ment) is
appropriate. As an illustration of this, Figure 2 is a
t-SNE projection of the context representations for
simulate vs. simulator vs. simulation, showing that
the different nominal forms have strong overlap.
Secondly, although the model learns whether to
copy or produce a new symbol well, some forms
are spelled incorrectly. Examples of this are studint,
studion or even studyant rather than student as the
agentive nominalisation of study. Here, the issue
is opaqueness in the etymology, with student be-



affix Re | affix  Re | affix  Re | affix Re transcribe | laptify fape crimmle beteive

-age 93 | -al 95 | -ance .75 | -ant .65 transcribe laptify fape crimmle  beterve
-ation 93 | -ator .77 | -ee 52 | -ence .82 transcription | laptification fapery crimmler betention
-ent .65 | -er .87 | -ery .84 | -ion 93 transcription | laptification fapication ~ crimmler beteption
-ist 80 | -ition .89 | -ment 90 | -or .64 transcription | laptification fapionment crimmler betention
-th 95 | -ure AT | -y 83 | NULL 98 transcription | laptification fapist crimmler betention
transcription | laptification fapist crimmler beteption
Table 2: Recall for various suffix types. Here NULL corre- transcript laptification  fapery crimmler betention
sponds to verb-verb cases. transcript laptification ~ fapist crimmler  beteption

ing borrowed from the Old French estudiant. For
transformations which are native to English, for
example, -ate — -ation, the model is much more
accurate. Table 2 shows recall values achieved for
various suffix types. We do not present precision
since it could not be reliably estimated without
extensive manual analysis.

In the split lexicon setting, the model sometimes
misses double consonants at the end of words, pro-
ducing wraper and winer and is biased towards
generating mostly productive suffixes. An exam-
ple of the last case might be stoption in place of
stoppage. We also studied how much the training
size affects the model’s accuracy by reducing the
data from 1,000 to 60,000 instances (maintaining
a balance over lemmas). Interestingly, we didn’t
observe a significant reduction in accuracy. Finally,
note that under split lexicon setting the model is
agnostic of existing derivations, sometimes over-
generating possible forms. A nice illustration of
that is trailation, trailment and trailer all being pro-
duced in the contexts of trailer. In other cases, the
model might miss some of the derivations, for in-
stance, predicting only government in the contexts
of governance and government. We hypothesize
that it is either due to very subtle differences in
their contexts or higher productivity of ment.

Finally, we experimented with some nonsense
stems, overwriting sentential instances of tran-
scribe to generate context-sensitive derivational
forms. Table 3 presents the nonsense stems, the
correct form of transcribe for a given context, and
the predicted derivational form of the nonsense
word. Note that the base form is used correctly
(top row) for three of the four nonsense words, and
that despite the wide variety of output forms they
resemble plausible words in English. By looking at
a larger slice of the data, we observed some regu-
larities. For instance, fapery was mainly produced
in the contexts of transcript whereas fapication
was more related to transcription. Table 3 also
shows that some of the stems appear to be more
productive than others.

Table 3: An experiment with nonsense base forms used in the
contexts of transcribe.

6 Conclusion and Future Work

We investigated the novel task of context-sensitive
derivation prediction for English, and proposed
an encoder-decoder model to generate nominalisa-
tions. Our best model achieved an accuracy of 90%
on a shared lexicon, and 66% on a split lexicon.
This suggests that there is regularity in derivational
processes and, indeed, in many cases the context
is indicative. As we mentioned earlier, there are
still many open questions which we leave for fu-
ture studies. Further, we plan to scale to other lan-
guages and augment our dataset with Wiktionary
data, to realise a much larger coverage and variety
of derivational forms.
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