
Learning Transductions to Test Systematic Compositionality

Josef Valvoda@ Naomi SaphraB Jonathan RawskiC

Ryan CotterellD Adina WilliamsE

@University of Cambridge BNew York University
CSan Jose State University DETH Zürich EFAIR

jv406@cam.ac.uk nsaphra@nyu.edu jon.rawski@sjsu.edu
ryan.cotterell@inf.ethz.ch adinawilliams@fb.com

Abstract

Recombining known primitive concepts into
larger novel combinations is a quintessentially
human cognitive capability. Whether large
neural models in NLP acquire this ability
while learning from data is an open question.
In this paper, we look at this problem from
the perspective of formal languages. We use
deterministic finite-state transducers to make
an unbounded number of datasets with con-
trollable properties governing compositional-
ity. By randomly sampling over many trans-
ducers, we explore which of their properties
(number of states, alphabet size, number of
transitions etc.) contribute to learnability of
a compositional relation by a neural network.
In general, we find that the models either learn
the relations completely or not at all. The key
is transition coverage, setting a soft learnabil-
ity limit at 400 examples per transition.

1 Introduction

Systematic compositionality is a hallmark of
human language (Hockett, 1959; Chomsky, 1957;
Montague, 1970; Partee, 1995). It is arguably a
requirement for any model to call itself a model
of language or to achieve human-like natural
language understanding. For instance, English
speakers reading the Jabberwocky (Carroll, 1871)
comprehend that the adjective slithy composes
with the plural noun toves to form the noun phrase
slithy toves, without having a clear understanding
of what either the word slithy or toves—let alone
their composition—means. This ability allows
humans to describe a complex environment using
a limited number of primitives (in the case of
language, words or morphemes). In cognitive
science, whether neural networks’ can acquire
such behavior has been debated for over 30 years
(Fodor and Pylyshyn, 1988; Marcus, 1998).

In recent work, researchers have analyzed
sequence-to-sequence model performance on
small, controlled datasets in order to draw con-
clusions about the inherent limitations of neural

models to acquire systematic compositionality
(Lake and Baroni, 2018; Hewitt et al., 2020;
Hupkes et al., 2020; Dankers et al., 2021). For
instance, Lake and Baroni (2018) cast doubt on
neural models’ ability to learn systematic behavior
encoded in their toy SCAN dataset, but shortly
thereafter, Bastings et al. (2018) demonstrate that
an out-of-the-box sequence-to-sequence model
could indeed master the task.

Rather than introducing another hand-crafted
dataset, our approach combines elements from two
linguistic traditions. On the one hand, we follow
Montague’s assertion that there is no important
theoretical difference between natural and artifi-
cial languages (Montague, 1970), and use artificial
languages, which are more tractable, to test for sys-
tematic compositionality. On the other, we take
lessons from the field of grammatical inference
(de la Higuera, 2010; Rawski and Heinz, 2019), and
evaluate neural sequence-to-sequence models on
many, automatically generated artificial languages
sampled from particular classes of functions—as is
standard practice at grammatical inference compe-
titions (Balle et al., 2017).

In this paper, we study the class of string
functions encoded by subsequential finite-state
transducers (SFST), a restricted class of general
finite-state transducers, which encode rational
relations (Mohri, 1997). We sample arbitrary
SFSTs to generate many different string-to-string
datasets, and evaluate the behavior of neural
sequence-to-sequence models when learning them.
By controlling the properties of the SFSTs we sam-
ple from, we are able to make precise statements
about the learnability of systematic phenomena.

Empirically, we find that neural sequence-to-
sequence models are capable of learning SFSTs
from finite data. Moreover, we observe an interest-
ing tendency for neural models to either generalize
correctly or to fail, with little middle ground. Our
analysis suggests that an explanation for this be-
havior lies in whether or not the training data has

mailto:jv406@cam.ac.uk
mailto:nsaphra@nyu.edu
mailto:jon.rawski@sjsu.edu
mailto:ryan.cotterell@inf.ethz.ch
mailto:adinawilliams@fb.com

sufficient coverage, i.e., every transition in a given
transducer is crossed in a minimum number of
training examples (≈ 400 on average in our exper-
iments). We then turn to an existing hand-crafted
dataset, namely the SCAN language, but approach
it through the lens of the SFST that encodes it. Via
a comparison with SCAN, we are able to identify
that repeated sub-graphs in the transducer can have
a positive effect on its learnability, relaxing the tran-
sition coverage requirement and thereby enabling
learnability of larger SFSTs. Our results suggest
that focusing on formal language theory, which
allows for a controlled setting, could help future
research on evaluating systematic compositionality.

2 Learning Finite-State Transductions

We argue that determining whether neural networks
exhibit systematic compositionality is fundamen-
tally equivalent to asking whether neural networks
are capable of learning rule-based behavior.

2.1 Montague’s Compositionality
Montague famously inspired the use of math-
ematical definitions of what it means to be
compositional—specifically, a function is compo-
sitional if it is a homomorphism, or has structure
preserving mapping between an input and an output
algebra (Andreas, 2019). In the context of string-
to-string maps, a function that preserves concate-
nation is a homomorphism. To make this notion
more formal, let Σ and Γ, be a pair of alphabets.
Making use of string concatenation ◦, we can con-
struct monoids (Σ∗, ◦) and (Γ∗, ◦) where the iden-
tity element is the empty string ε. In this context,
a function f : Σ∗ → Γ∗ is a homomorphism if it
obeys the following two conditions:

1. f(x ◦ y) = f(x) ◦ f(y) for all x, y in Σ∗

2. f(ε) = ε

As we will see, deterministic transducers natu-
rally encode a homomorphism between two alpha-
bets. Therefore, we test compositional ability of
a neural network by training it to learn string-to-
string maps encoded by a transducer.

2.2 Why Learn Finte-State Transductions?
Our study focuses on learning a particular kind of
transductions. Specifically, we focus on restricted
classes of regular relations, which are computed by
finite-state transducers. We believe this is a natu-
ral starting point, since this class of grammars is

mathematically well-studied, has provable learning
guarantees, and has a long use history in linguistics
and NLP (Mohri, 1997).

Finite-state transducers also encompass most
previous work on systematic compositionality:
many datasets, e.g., SCAN (Lake and Baroni,
2018) and gSCAN (Ruis et al., 2020), describe
finite string relations and are, therefore, finite-state
by definition. These handcrafted datasets have
many advantages, like easy interpretability and
domain specificity, since they directly encode
particular relevant relationships, such as movement
over a grid or specific linguistic phenomena.
However, this realism pays the price of diminished
robustness of any findings over such datasets
(Rogers and Pullum, 2011). By removing the
ability to simply adjust properties of the underlying
function class, and the transducers which compute
it, one loses the possibility to experiment more
robustly over a whole class of functions, rather
than just one instantiation of it.

Rather than manually designing individual
datasets ourselves, we generate unboundedly many
new datasets via randomly sampled SFSTs. This
offers a principled view of the problem of learning
artificial languages possessing certain properties,
by simply varying properties of the class of trans-
ducers that generate them. Furthermore, as we
will see in §5, one may view existing composi-
tionality tasks as SFSTs which enables a deeper
understanding of modeling results. Both specific
artificial languages, such as the compositionality
datasets mentioned above, and those randomly sam-
pled from a particular function class such as the
work presented in this paper, are worth studying.
However, our approach has been missing from the
systematic compositionality discourse.

2.3 Subsequential Finite-State Transducers

A subsequential finite-state transducer is a trans-
ducer that is deterministic with respect to the input
tape. By construction, subsequential transducers
are functional, i.e., the string-to-string relations
they encode are functions. An alphabet Σ is a finite,
non-empty set of symbols; let Σ∗ be all strings over
Σ, including λ, the empty string. A subsequential
finite-state transducer (SFST) for an input alpha-
bet Σ and an input–output alphabet Γ is a tuple
T = 〈Q, q0, Qf , δ, o, ω〉 , where Q is the set of
states, q0 ∈ Q is the (unique) start state, Qf ⊆ Q
is the set of final states, δ : Q × Σ → Q is the

10 19 16 28 19 7 27 20 ⇒ 33 31 31 30 57 56 44
11 10 18 2 5 19 7 25 4 1 4 ⇒ 48 33 38 45 40 30 57 44 32

1 18 23 2 2 22 25 3 18 11 23 1 0 1 ⇒ 53 39 45 37 46 44 36 53 48 39 38 41
1 21 20 11 19 2 5 11 11 10 13 8 ⇒ 40 43 37 30 37 32 48 48 33 43 40

Table 1: Example of our inputs on the left and outputs on the right. Using numbers instead of words ensures
the relationship between the input and output sequences requires knowing the underlining SFST and can’t be a
function of other factors, such as word similarity.

transition function, o : Q× Σ→ Γ∗ is the output
function, and ω : Qf → Γ∗ is the final function.
We define the reflexive, transitive closure of δ∗ and
o∗ as δ∗ : Q× Σ∗ → Q and o∗ : Q× Σ∗ → Γ∗.

The semantics of a SFST is a transduction
t(T) defined as follows; let t̂ = t(T). For w ∈
Σ∗, t̂(w) = uv where o (q0, w) = u, and ω (qf) =
v if δ∗ (q0, w) = qf for some qf ∈ Qf ; t̂(w) is
undefined otherwise. The class of subsequen-
tial functions are those describable with SFSTs,
among other algebraic and logical characterisations
(Bhaskar et al., 2020; Oncina et al., 1993). They are
a subclass of the Regular relations, and a superclass
of the finite relations.

Informally, for subsequential functions, any of
the infinitely many possible input strings is classi-
fied as belonging to exactly one of finitely many
regular languages. For any input element x of that
string, the output u only depends on x and the reg-
ular stringset to which its preceding input string
belongs. The key compositionality property of sub-
sequential functions is finite lookahead; the trans-
ducer can only remember finitely much information
about the input for any output symbol.

SFSTs as Homomorphisms. Now we discuss
the exact sense, in which SFSTs are homomor-
phisms. Given a path in a SFST from q · · · q′′, for
any state q′ on this path, we have that o(q · · · q′′) =
o(q · · · q′) ◦ o(q′ · · · q′′), i.e., we can simply take
the concatenation of the yield of the output path
of the two subpaths. This will give us the same
string as if we were to take the yield of the full
path. By definition, an SFST therefore encodes a
homomorphism.

2.4 Generating Random SFSTs

We follow these steps in generating the SFSTs
used to create our datasets. We first generate ran-
dom directed graphs from the following stochas-
tic process. For a given a set of states Q with
|Q| = N and an input alphabet Σ, we sample
a matrix B(σ) ∈ BN×N for each σ ∈ Σ where

B = {0, 1}. During sampling, we additionally en-
force the constraint that there be at most one non-
zero entry in every row vector b(σ)

i . This constraint
ensures that the resulting SFST is subsequential (or
input deterministic) by construction. We sample
uniform at random over this space of matrices that
satisfy this constraint. In terms of the semantics, if
the entry b(σ)ij = 1, it means our generated SFST

has a transition from state qi
σ−→ qj with input

symbol σ. Then, for every transition qi
σ−→ qj in

our generated SFST, we sample its output symbol
γ from a uniform distribution over the output al-

phabet Γ. This results in a transition qi
σ/γ−→ qj .

Finally, to get a canonical representation for par-
ticular SFSTs, we minimize it (Choffrut, 2003).
Minimization also ensures that we have created
thousands of different and unique SFSTs—i.e., that
we are not doubly sampling.

A state in a finite-state transducer is accessible if
there exists a path from the initial state to that state
in the machine. A state is co-accessible if there is
a path from it to a final state. To create interesting
SFSTs, we additionally enforce both accessibility
and co-accessibility. Testing for accessibility and
co-accessiblity is easily achieved with a depth-first
search. In order to ensure our sampled SFSTs sat-
isfy these two constraints, we reject those samples
that violate this constraint.

3 Experimental Methods

We evaluate whether neural sequence-to-sequence
models can learn our generated SFSTs, and how
they compare to the traditional symbolic learners.

3.1 Data

Here, we discuss the creation of the datasets we
use to investigate the learnability of the regular
relations. Our input alphabet consisted of a finite
set of numbers; we set its size to a constant of
10. Half the time, we also add a special empty
emission token λ (in our Python implementation,

Figure 1: Average minimum frequency of a transition
appearing in training data for learning a SFST is 400.

−1) to the output alphabets to see if it affects the
neural models learnability of the SFST.

We first generate 100 unique datasets using SF-
STs where the number of states ranges from 10
to 100 in increments of 10. We further generate
100 unique datasets using SFSTs with states rang-
ing from 21 to 39. In total, we experiment with
2000 unique datasets. However, using the sampling
method, one can generate an arbitrary number of
SFSTs and, concurrently, datasets, to various speci-
fications as desired.

To generate the input–output pairs for our exper-
iments, we randomly walk through the SFST. We
define a parameter for the chance that a given state
will emit a final symbol, and set it to 10%. This pro-
vides some diversity to the sequence length within
computational limits of the GPU. Following Lake
and Baroni (2018), the maximum number of steps
is set to 50. We continue to walk the SFST until
we collect 20, 000 unique input-output pairs. We
further double the dataset size to 40, 000 for SFSTs
with 21 to 39 states, since we observe the accuracy
drop-off in this region. All datasets are randomly
split 80–20 into training and test sets.

All particular states and transitions (i.e., single
connections between precisely two states) are seen
by the model during training. This means that
coverage of both the states and transitions for all
datasets is 100%. Recall though, that all sequences
are unique, because the path through the states
via the transitions is determined by random walk.
Table 1 shows some example transductions.

Figure 2: As the number of states in SFST increases,
accuracy drops to nearly zero percent between 20 and
40 states.

3.2 Neural Sequence-to-Sequence Models

We train neural encoder-decoder models in the
style of Bahdanau et al. (2015), using bi-directional
LSTMs with a tanh activation function and a
global attention mechanism. Attention allows the
decoder to selectively “attend” to the encoder’s
hidden states by learning a set of weights. These
weights map the decoder’s current state to another
set of weights for timesteps in the input. Attention
then concatenates the current decoder hidden state,
i.e. the weighted combination of all encoder hidden
states, to yield a new current decoder state. This
way, the decoder can pull information directly from
the encoder by learning an alignment between the
output and input representations.

We use the following hyperparameters; 200 di-
mensional encoder and decoder with 2 layers, max-
imum gradient clipping normalization of 5, dropout
of 0.5 and batch size 64. Our alphabet tokens
are embedded as 100 dimensional vectors. Just
like Lake and Baroni (2018), we run the model
for 100, 000 steps. Unlike them though, we rely
on the neutral transducer code base from Wu and
Cotterell (2019) which uses the Adam optimizer
(Kingma and Ba, 2015) with the default learning
rate of 0.001. When we report results for larger
LSTM models, this is the effect of changing only
the dimensions of the encoder and decoder, both to
300 dimensions, and keeping all the other hyperpa-
rameters the same as the smaller models.

3.3 OSTIA

The onward subsequential transducer inference al-
gorithm (OSTIA; Oncina et al. 1993) inductively

learns the class of subsequential functions from pos-
itive presentations of input-output strings, OSTIA
works by first building a prefix-tree transducer of
the training data, which is then transformed through
a series of state-merging operations into the SFST
encoding the function the data is drawn from. If a
characteristic sample is contained in the learning
data, OSTIA finds a correct transducer in poly-
nomial (cubic) time. Since OSTIA is designed
specifically with SFST in mind, we wanted to see
how it compares to the neural models above and
set a baseline with it. Unfortunately, OSTIA’s cu-
bic nature makes learning from large datasets like
ours very time intensive. To speed up the process,
we limit the number of samples we provide to OS-
TIA to 1000, only 10% to 5% of what the neural
transducers obtain. This keeps OSTIA’s run time
roughly equivalent to its neural counterparts.

4 Results

Training over many datasets enables us to make the
following observations about how different SFST
properties affect the learnability of a compositional
language.

Minimum Transition Coverage. Figure 1 re-
veals a threshold on the number of samples per
transition required to comfortably learn the trans-
ducer: It is about 400 samples. This may seem un-
surprising given neural networks’ “notorious thirst”
for data (Lake and Baroni, 2018). In the vast major-
ity of cases, SFSTs that do not meet this threshold
learn nothing. In the few cases where they man-
age to have non-zero accuracy, we observe that
the earlier transitions in the SFST have attained
reasonable coverage, leading us to believe that the
coverage is the linchpin of learning SFSTs.

Number of States. Models’ ability to learn
datasets depends on the number of states in the
SFST (see Figure 2). There is a sharp drop-off
around 20 states, decreasing exponentially as states
grow linearly, until 40 states. From there on, mod-
els only achieve low accuracy. Our findings offer an
explanation of why training on shorter sequences
impedes the learnability of a dataset. For exam-
ple, in Lake and Baroni (2018)’s and Ruis et al.
(2020)’s length based experiments, where the task
is to generalize to commands with longer action
sequence, we hypothesize that shorter sequences
correlate with lower coverage. We find that, indeed,
splitting the datasets along length drops the cov-

Figure 3: As SFST state size increases, average ac-
curacy (blue line) decreases. Increasing the neural
model’s size improves accuracy (purple line). Empty
string λ in output alphabet further reduces accuracy
(yellow line). Similar behavior appears when plotting
number of transitions instead of states.

erage compared to a random split. This suggests
that splitting datasets by length of sequences has
little to do with systematicity, but a lot to do with
coverage. We discuss this in further detail in §5.

Number of LSTM Hidden Units. We find cov-
erage is only a soft limit. When we increase the
memory size of the LSTM from 200 to 300 di-
mensions, the models can learn even those datasets
that seemed previously unlearnable (see Figure 3,
where the purple line is the average accuracy of 300
dimensional LSTM). Except the higher state cover-
age threshold, the trend these models follow is the
same as for their lower dimensional counterparts.

Empty Transition. We explore another way of
making a more difficult finite function: we allow
the SFSTs to contain empty transitions λ and test
whether languages generated by SFSTs with empty
transitions are harder by measuring the average ac-
curacy over SFSTs with and without them. We find
a 12% performance drop on the test set: SFSTs
without empty transitions achieve 47% average ac-
curacy versus 35% for SFSTs with an empty string.
We therefore conclude that the empty transition
does make inducing a SFST empirically harder for
the models (see Figure 3, where the blue line is
average accuracy without empty strings, and the
yellow line is average accuracy with them).

OSTIA is Slow. In terms of wallclock time, we
find that a open-source implementation of OSTIA1

does not scale to dataset sizes above 1000, for
1github.com/alenaks/OSTIA

https://github.com/alenaks/OSTIA

which it takes roughly 5 hours on Nvidia Tesla
V100 GPU to complete a run on one dataset, about
the same time it takes to train our neural models.
With 1000 samples, OSTIA fails to get accuracy
above 1%. In contrast, the neural sequence-to-
sequence models reach almost 100%. On the one
hand, reducing the size of the training dataset dis-
advantages OSTIA. On the other hand, providing
OSTIA with the full 20, 000 samples is unwork-
able, because it will run without converging for
over 3 days on a single dataset. Given sufficient
time and the function’s characteristic sample, OS-
TIA is guaranteed to learn the SFSTs perfectly, but
in practice, it is too slow to use.

5 Discussion: The Learnability of SCAN

The empirical learnability of SFSTs appears to
hinge on the transition coverage. In this section we
discuss the SCAN language and the experiments
conducted on it. First, we argue the transition cov-
erage can explain some of the results observed over
SCAN. Second, we cast SCAN as a SFST to reason
why it is learnable despite the parameters of the
SFST that encodes it would suggest otherwise.

Lake and Baroni (2018) find that training mod-
els on a random split of the SCAN dataset dramat-
ically outperforms models trained only on short
commands, i.e. the lengthwise split. While the best
random split model achieves 100% accuracy, the
best model trained on the lengthwise split achieves
only 21% accuracy. Furthermore, the accuracy
drops from 80% to zero between the 24th and 26th

token of the models output. A situation similar to
what we observe in Fig. 3.

Lake and Baroni (2018) explore two possible
sources of this error, specifically decoder search
failures and early terminations. However, they ad-
mit that neither seems to fully explain the perfor-
mance chasm. In light of our work, the likely rea-
son for the performance drop-off comes down to
the lack of sufficient transition coverage necessary
to learn the particular transitions enabling longer
commands. Since the longer action sequences
require mastering repetition inducing commands:
twice, thrice, and, and after, we hypothesise that a
providing sufficient coverage of these commands
would dissolve the difference in accuracy between
the lenghtwise and random splits. In other words,
we suspect the issue doesn’t reflect a neural net-
work’s ability to learn systematic compositionality,
but rather the lower coverage of SCAN commands

which appear at the end of an input sequence.

We extend our analysis by encoding SCAN as
a SFST and find that it far exceeds our maximum
SFST size of 100 states—we estimate the full SFST
for SCAN has 7, 728 states. With a finite dataset
size of 20, 000 input–output pairs, SCAN should
not be possible to learn with a high accuracy. How-
ever, unlike datasets of a similar size, it turns out
that SCAN is nearly perfectly learnable in our
(random-split) experiments. This naturally raises
the question of what makes SCAN special. We find
the answer within the structure of the SFST that en-
codes it. SCAN’s input alphabet includes primitive
commands such as walk, turn, run, turn left and
turn right among others. Each primitive command
has a single accept state. Figure 4, shows a sim-
plified transducer encoding of the primitive jump.
Although the SCAN SFST has over 7, 000 states,
the majority of these states and the transitions be-
tween them are repeated. Qualitatively, SCAN has
23 states for encoding each primitive command
connected by 50 transitions. While SCAN as a
SFST would be very large, its core logic is not
so complex. Two of SCAN’s design features in
particular explain this: reversal and repetition.

First, the transduction in SCAN reverses the
order of commands so that jump right turns into
RTURN JUMP. Because of this reversal, the SFST
encoding of SCAN cannot have a single encoding
for all SCAN primitives. Each must be encoded
separately, since the only transition in SCAN that
can return anything is the one leading to the final
state. Recall Figure 4, which encodes the basic
logic of a single primitive such as jump, ignor-
ing twice and thrice commands. We need four of
these blocks, each with 40 states, to encode the
four SCAN primitives or just above what we find
comfortably learnable in our datasets.

Second, SCAN also has commands that allow for
repetitions of sequences: twice, thrice, and, and af-
ter, which additionally reverse the input strings for
output. Adding those primitives in will triple the
number of states transitioning to the end state. For
example, from state 2 in Figure 4, which encodes
jump right we will need two more states transition-
ing from it, encoding jump right twice and jump
right thrice. Repetition therefore expands the num-
ber of states per SCAN primitive to 24, putting it
far above our empirically learnable threshold.

This effect is exacerbated with the commands
and and after, where for every primitive in SCAN,

0 1

2

3

10

4

5

6

7

8

9

jump/λ

right/λ left/λ

λ/RTURNJUMP

λ/LTURNJUMP

λ/JUMP

around/λ

opposite/λ

right/λ

left/λ

λ/RTURN(x4)JUMP

λ/LTURN(x4)JUMP

right/λ

left/λ

λ/RTURN(x2)JUMP

λ/LTURN(x2)JUMP

Figure 4: Core SFST block of SCAN encoding a primitive like jump. 0 is the start state and 10 is the accept state.
Moving through states generates simple jump commands in SCAN dataset.

each transition connecting to the end state—10
in Figure 4—will have the whole SFST itself ap-
pended to its end, thereby multiplying the number
of states each time. Since SCAN is learnable to
a near 100% accuracy, we hypothesize that the
LSTM must learn the repeated patterns between
the different primitives, allowing models to learn
SCAN despite it exceeding the ceiling of 40 states.

We lend some support to this hypothesis by in-
cluding these special properties for random SFSTs
in our datasets. We generate datasets with loops
over the 20-state SFSTs, i.e., the largest feasibly
learnable SFSTs. The loops add twice and thrice
commands to each dataset, increasing the number
of states in the SFST that generated them. We find
no difference in learning these augmented SFSTs,
demonstrating that sub-graph structures in the SF-
STs indeed affect their learnability.

Therefore, we conclude that while SCAN’s de-
sign contains many repeated blocks (i.e., sub-
graphs), the ability of our neural models to learn
a SFST depends on the complexity of the unique
structure encoded by it, rather than these repeti-
tions.2 Viewing SCAN through the lens of au-
tomata thus reveals the properties that enable the
learnability of the finite language it encodes.

However, the case of SCAN also reveals that to
predict ease of learning requires a concept of com-
plexity that is not reflected in SFST state counts:

2Note that “blocks” are not visible to SFSTs. SFSTs have
no way to encode similarity between their parts.

the duplicated sub-graph structures. We hope fu-
ture work will use our method and explore different
types of automata to identify classes that robustly
encode learnability, bringing us closer to under-
standing how neural models learn such functions.

6 Related Work

We build on two strains of research: the work on
systematic compositionality and on grammatical
inference. This section contextualizes our work.

6.1 Compositionality Datasets
There is a growing number of artificial language
datasets focused on systematic compositionality.
Lake and Baroni (2018) introduced a SCAN
dataset, made up of simple navigational text com-
mands. The task is to translate the command in the
simple natural language into sequences of actions.
One successor to SCAN is the NACS dataset (Bast-
ings et al., 2018), which is comparable to SCAN,
but instead of mapping multiple input signals to a
single duplicated output symbol (e.g., walk twice
→ WALK WALK), NACS does the opposite (WALK
WALK→ walk twice). NACS is both theoretically
more difficult, and has been shown to be empiri-
cally more challenging (for both GRU and RNNs
with attention, Bastings et al. 2018). The same
inversion method applied to the transducers in our
datasets may result in non-deterministic (and thus
non-subsequential) transductions, since determin-
istic SFSTs are not closed under inverse (Mohri,

1997). Another successor is gSCAN (Ruis et al.,
2020) which grounds SCAN-like commands in
states of a grid world, closer to Mikolov et al.
(2016)’s grid world grounding for their agents.
gSCAN requires the agent to learn differences
between sizes and colours of different geometric
shapes and interact with them, by moving them
around the grid world. Executing a gSCAN com-
mand is therefore much more difficult than to ex-
ecute its SCAN counterpart. As Ruis et al. (2020)
asserts, the gSCAN dataset removes artefacts in
SCAN which are not central to the compositional
generalization. They find that models perform
worse on gSCAN than on SCAN.

Like the work above, we investigate systematic
compositionality, but unlike the work above we
generalise over the existing datasets by sampling
from a well-defined class of patterns.

6.2 Grammatical Inference.

Grammatical inference studies the general behavior
of learning algorithms over classes of functions
generated by varieties of automata, rather than the
specific behavior of specific algorithms on specific
functions. Our work focuses on the learning of
a restricted class of functions generated by a
correspondingly restricted class of finite-state trans-
ducers. This allows us to synthesize our study of
compositionality in neural models as rule-based in-
ference by neural models, which we can restrict in
principled ways. Finite-state machines generalise
many techniques in NLP: probabilistic finite-state
automata, hidden Markov models, Markov chains,
n-grams, probabilistic suffix trees, deterministic
stochastic probabilistic automata, weighted
automata, and other syntactic objects which
generate distributions over sets of possible infinite
cardinality of strings, sequences, words, trees, and
graphs (Vidal et al., 2005). Many grammatical
inference studies of neural networks test them on
samples drawn from some deterministic finite-state
acceptor (DFA) (Cleeremans et al., 1989), and
some then use quantization, clustering, or spectral
algorithms to partition the RNN state space into
an extractable DFA (Giles et al., 1992; Eyraud and
Ayache, 2020) (see Jacobsson 2005 for a review).

Other inference experiments using neural nets
attempt to see if the regular boundary can be em-
pirically crossed. LSTMs (Hochreiter and Schmid-
huber, 1997) can perform dynamic counting and
variably learn simple counter languages such as
some k-Dyck languages and anbn patterns (Weiss

et al., 2018; Suzgun et al., 2019; Bhattamishra et al.,
2020; Hewitt et al., 2020), which are generated
by a finite-state machine with a counter on top
(Schützenberger, 1962). In contrast, Avcu et al.
(2017) show that LSTM and other RNN architec-
tures often fail to learn long-distance dependencies
drawn from simpler sub-regular language classes,
even on large benchmarks (Mahalunkar and Kelle-
her, 2019). Nelson et al. (2020) study the inference
of sequence-to-sequence networks, showing that
RNN, LSTM, and GRU (Cho et al., 2014) sys-
tematically fail to learn a wide range of regular
string copying functions generated from a family
of two-way transducers, which characterize reg-
ular string-to-string functions. When augmented
with attention, they reliably learn every function,
and the attention history mirrors the derivations
of the corresponding two-way transducers. These
independently productive strands of work in com-
positionality and inference suggest that our work is
a reasonable starting point for future interactions.

7 Conclusion

We study if sequence-to-sequence models are capa-
ble of learning systematic compositionality. To do
this we sample arbitrary SFSTs and generate thou-
sands of unique string-to-string datasets. By know-
ing the structure of the underlying SFSTs we can
observe which of the underlying factors affect the
learnability of this class of languages. This allows
us to make precise statements about the learnability
of systematic phenomena by a neural network.

We showed that neural models are indeed capa-
ble of learning generalized systematic behaviour.
Moreover, we find that neural models tend to ei-
ther generalize completely or fail miserably, with
little middle ground. We pin down the underlying
cause as transition coverage. With this in mind,
we can now reason about possible cause for a pro-
nounced performance difference between random
and lengthwise split observed on the SCAN dataset.
We observe that the cause here is likely not due
to the lack of systematicity, but rather the lack of
transition coverage. We find that formalising a
human designed finite language as a SFST can re-
veal factors affecting its learnability which would
otherwise remain hidden. Specifically, repeating
sub-graphs in its SFST encoding can lead to learn-
ability of SFSTs with a much higher number of
states, and a corresponding lower transition cover-
age, than one would expect from an average dataset

of similar number of states. Our formal language
approach therefore not only allows for novel in-
sights into the constrains for the neural models, but
also a novel way of analysing the existing work.

References
Jacob Andreas. 2019. Measuring compositionality in

representation learning. In 7th International Confer-
ence on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Enes Avcu, Chihiro Shibata, and Jeffrey Heinz. 2017.
Subregular complexity and deep learning. In
CLASP Papers in Computational Linguistics: Pro-
ceedings of the Conference on Logic and Ma-
chine Learning in Natural Language (LaML 2017),
Gothenburg, 12 –13 June, pages 20–33.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Borja Balle, Rémi Eyraud, Franco M. Luque, Ariadna
Quattoni, and Sicco Verwer. 2017. Results of the
sequence prediction challenge (SPiCe): a competi-
tion on learning the next symbol in a sequence. In
Proceedings of The 13th International Conference
on Grammatical Inference, volume 57 of Proceed-
ings of Machine Learning Research, pages 132–136,
Delft, The Netherlands. PMLR.

Jazmijn Bastings, Marco Baroni, Jason Weston,
Kyunghyun Cho, and Douwe Kiela. 2018. Jump
to better conclusions: SCAN both left and right.
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 47–55.

Siddharth Bhaskar, Jane Chandlee, Adam Jardine, and
Christopher Oakden. 2020. Boolean monadic re-
cursive schemes as a logical characterization of
the subsequential functions. In Language and Au-
tomata Theory and Applications - LATA 2020, Lec-
ture Notes in Computer Science, pages 157–169.
Springer.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the practical ability of recurrent neural
networks to recognize hierarchical languages. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 1481–1494,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Lewis Carroll. 1871. Through the Looking Glass.
Macmillan London.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning

phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Christian Choffrut. 2003. Minimizing subsequential
transducers: a survey. Theoretical Computer Sci-
ence, 292(1):131 – 143. Selected Papers in honor
of Jean Berstel.

Noam Chomsky. 1957. Syntactic Structures. Walter de
Gruyter.

Axel Cleeremans, David Servan-Schreiber, and
James L. McClelland. 1989. Finite state au-
tomata and simple recurrent networks. Neural
Computation, 1(3):372–381.

Verna Dankers, Elia Bruni, and Dieuwke Hupkes. 2021.
The paradox of the compositionality of natural lan-
guage: a neural machine translation case study.
arXiv preprint arXiv:2108.05885.

Remi Eyraud and Stephane Ayache. 2020. Distilla-
tion of weighted automata from recurrent neural net-
works using a spectral approach. arXiv preprint
arXiv:2009.13101.

Jerry A. Fodor and Zenon W. Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3–71.

C. Lee Giles, Clifford B. Miller, Dong Chen, Hsing-
Hen Chen, Guo-Zheng Sun, and Yee-Chun Lee.
1992. Learning and extracting finite state automata
with second-order recurrent neural networks. Neu-
ral Computation, 4(3):393–405.

John Hewitt, Michael Hahn, Surya Ganguli, Percy
Liang, and Christopher D. Manning. 2020. RNNs
can generate bounded hierarchical languages with
optimal memory. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1978–2010, Online. As-
sociation for Computational Linguistics.

Colin de la Higuera. 2010. Grammatical Inference:
Learning Automata and Grammars. Cambridge Uni-
versity Press.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Charles F. Hockett. 1959. Animal “languages” and hu-
man language. Human Biology, 31(1):32–39.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and
Elia Bruni. 2020. Compositionality decomposed:
How do neural networks generalise? (extended ab-
stract). In Proceedings of the Twenty-Ninth In-
ternational Joint Conference on Artificial Intelli-
gence, IJCAI-20, pages 5065–5069. International
Joint Conferences on Artificial Intelligence Organi-
zation. Journal track.

https://openreview.net/forum?id=HJz05o0qK7
https://openreview.net/forum?id=HJz05o0qK7
https://arxiv.org/pdf/1705.05940.pdf
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://proceedings.mlr.press/v57/balle16.html
http://proceedings.mlr.press/v57/balle16.html
http://proceedings.mlr.press/v57/balle16.html
https://doi.org/10.18653/v1/W18-5407
https://doi.org/10.18653/v1/W18-5407
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206634/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206634/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206634/
https://www.aclweb.org/anthology/2020.coling-main.129
https://www.aclweb.org/anthology/2020.coling-main.129
https://www.gutenberg.org/files/12/12-h/12-h.htm
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/https://doi.org/10.1016/S0304-3975(01)00219-5
https://doi.org/https://doi.org/10.1016/S0304-3975(01)00219-5
https://doi.org/10.1515/9783112316009
https://axc.ulb.be/uploads/2015/11/89-nc.pdf
https://axc.ulb.be/uploads/2015/11/89-nc.pdf
https://arxiv.org/pdf/2108.05885.pdf
https://arxiv.org/pdf/2108.05885.pdf
https://arxiv.org/pdf/2009.13101.pdf
https://arxiv.org/pdf/2009.13101.pdf
https://arxiv.org/pdf/2009.13101.pdf
https://ruccs.rutgers.edu/images/personal-zenon-pylyshyn/proseminars/Proseminar13/ConnectionistArchitecture.pdf
https://ruccs.rutgers.edu/images/personal-zenon-pylyshyn/proseminars/Proseminar13/ConnectionistArchitecture.pdf
https://ruccs.rutgers.edu/images/personal-zenon-pylyshyn/proseminars/Proseminar13/ConnectionistArchitecture.pdf
https://direct.mit.edu/neco/article-abstract/4/3/393/5641/Learning-and-Extracting-Finite-State-Automata-with?redirectedFrom=fulltext
https://direct.mit.edu/neco/article-abstract/4/3/393/5641/Learning-and-Extracting-Finite-State-Automata-with?redirectedFrom=fulltext
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://books.google.es/books?id=XAOE5V9B4dUC
https://books.google.es/books?id=XAOE5V9B4dUC
https://direct.mit.edu/neco/article-abstract/9/8/1735/6109/Long-Short-Term-Memory?redirectedFrom=fulltext
https://www.jstor.org/stable/41449227
https://www.jstor.org/stable/41449227
https://doi.org/10.24963/ijcai.2020/708
https://doi.org/10.24963/ijcai.2020/708
https://doi.org/10.24963/ijcai.2020/708

Henrik Jacobsson. 2005. Rule extraction from recur-
rent neural networks: A taxonomy and review. Neu-
ral Computation, 17(6):1223–1263.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational Conference on Machine Learning, pages
2873–2882. PMLR.

Abhijit Mahalunkar and John Kelleher. 2019. Multi-
element long distance dependencies: Using SPk
languages to explore the characteristics of long-
distance dependencies. In Proceedings of the Work-
shop on Deep Learning and Formal Languages:
Building Bridges, pages 34–43, Florence. Associa-
tion for Computational Linguistics.

Gary F. Marcus. 1998. Rethinking eliminative connec-
tionism. Cognitive Psychology, 37(3):243–282.

Tomas Mikolov, Armand Joulin, and Marco Baroni.
2016. A roadmap towards machine intelligence.
In International Conference on Intelligent Text Pro-
cessing and Computational Linguistics, pages 29–
61. Springer.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Lin-
guistics, 23(2):269–311.

Richard Montague. 1970. Universal grammar. Theo-
ria.

Max Nelson, Hossep Dolatian, Jonathan Rawski, and
Brandon Prickett. 2020. Probing RNN encoder-
decoder generalization of subregular functions us-
ing reduplication. In Proceedings of the Society
for Computation in Linguistics 2020, pages 167–
178, New York, New York. Association for Compu-
tational Linguistics.

José Oncina, Pedro Garcı́a, and Enrique Vidal.
1993. Learning subsequential transducers for pat-
tern recognition interpretation tasks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
15(5):448–458.

Barbara Partee. 1995. Lexical semantics and composi-
tionality. An Invitation to Cognitive Science: Lan-
guage, 1:311–360.

Jonathan Rawski and Jeffrey Heinz. 2019. No free
lunch in linguistics or machine learning: Response
to pater. Language, 95(1):e125–e135.

James Rogers and Geoffrey K. Pullum. 2011. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Informa-
tion, 20(3):329–342.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane
Bouchacourt, and Brenden M Lake. 2020. A bench-
mark for systematic generalization in grounded lan-
guage understanding. In Advances in Neural In-
formation Processing Systems 33 pre-proceedings
(NeurIPS 2020).

Marcel P. Schützenberger. 1962. Finite counting au-
tomata. Information and Control, 5:91–107.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and
Sebastian Gehrmann. 2019. LSTM networks can
perform dynamic counting. In Proceedings of the
Workshop on Deep Learning and Formal Languages:
Building Bridges, pages 44–54, Florence. Associa-
tion for Computational Linguistics.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacu-
berta, and R. C. Carrasco. 2005. Probabilistic finite-
state machines - part I. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 27(7):1013–
1025.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018.
On the practical computational power of finite pre-
cision RNNs for language recognition. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 740–745, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Shijie Wu and Ryan Cotterell. 2019. Exact hard mono-
tonic attention for character-level transduction. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1530–
1537, Florence, Italy. Association for Computational
Linguistics.

https://dl.acm.org/doi/10.1162/0899766053630350
https://dl.acm.org/doi/10.1162/0899766053630350
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/pdf/1711.00350.pdf
https://arxiv.org/pdf/1711.00350.pdf
https://arxiv.org/pdf/1711.00350.pdf
https://doi.org/10.18653/v1/W19-3904
https://doi.org/10.18653/v1/W19-3904
https://doi.org/10.18653/v1/W19-3904
https://doi.org/10.18653/v1/W19-3904
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.7899&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.7899&rep=rep1&type=pdf
https://arxiv.org/pdf/1511.08130.pdf
https://www.aclweb.org/anthology/J97-2003
https://www.aclweb.org/anthology/J97-2003
https://onlinelibrary.wiley.com/doi/10.1111/j.1755-2567.1970.tb00434.x
https://www.aclweb.org/anthology/2020.scil-1.22
https://www.aclweb.org/anthology/2020.scil-1.22
https://www.aclweb.org/anthology/2020.scil-1.22
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.1566&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.1566&rep=rep1&type=pdf
https://www.cs.brandeis.edu/~jamesp/classes/cs216-2009/readings2009/ParteeSemanticsAndCompositionality.pdf
https://www.cs.brandeis.edu/~jamesp/classes/cs216-2009/readings2009/ParteeSemanticsAndCompositionality.pdf
http://www.socsci.uci.edu/~lpearl/colareadinggroup/readings/RawskiHeinz2019_ResponseToPater.pdf
http://www.socsci.uci.edu/~lpearl/colareadinggroup/readings/RawskiHeinz2019_ResponseToPater.pdf
http://www.socsci.uci.edu/~lpearl/colareadinggroup/readings/RawskiHeinz2019_ResponseToPater.pdf
http://www.lel.ed.ac.uk/~gpullum/MoL10final.pdf
http://www.lel.ed.ac.uk/~gpullum/MoL10final.pdf
http://www.lel.ed.ac.uk/~gpullum/MoL10final.pdf
https://arxiv.org/pdf/2003.05161.pdf
https://arxiv.org/pdf/2003.05161.pdf
https://arxiv.org/pdf/2003.05161.pdf
https://www.sciencedirect.com/science/article/pii/S0019995862902449?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0019995862902449?via%3Dihub
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.1109/TPAMI.2005.147
https://doi.org/10.1109/TPAMI.2005.147
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P18-2117
https://doi.org/10.18653/v1/P19-1148
https://doi.org/10.18653/v1/P19-1148

