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Abstract

Can we construct a neural language model
which is inductively biased towards learning
human language? Motivated by this ques-
tion, we aim at constructing an informa-
tive prior for held-out languages on the task
of character-level, open-vocabulary language
modeling. We obtain this prior as the pos-
terior over network weights conditioned on
the data from a sample of training languages.
This prioris approximated through Laplace’s
method. Based on a large and diverse sam-
ple of languages, the use of our prior out-
performs baseline models with an uninforma-
tive prior in both zero-shot and few-shot set-
tings, showing that the prior is imbued with
universal linguistic knowledge. Moreover, we
harness broad language-specific information
available for most languages of the world, i.e.,
features from typological databases, as distant
supervision for held-out languages. We ex-
plore several language modeling conditioning
techniques, including concatenation and meta-
networks for parameter generation. They ap-
pear beneficial in the few-shot setting, but in-
effective in the zero-shot setting. Since the
paucity of even plain digital text affects the ma-
jority of the world’s languages, we hope that
these insights will broaden the scope of appli-
cations for language technology.

1 Introduction

With the success of recurrent neural networks and
other black-box models on core NLP tasks, such as
language modelling, researchers have turned their
attention to the study of the inductive bias such neu-
ral models exhibit (Linzen et al., 2016; Marvin and
Linzen, 2018; Ravfogel et al., 2018). A number of
natural questions have been asked. For example,
do recurrent neural language models learn syntax
(Marvin and Linzen, 2018)? Do they map onto
grammaticality judgements (Warstadt et al., 2018)?

However, as Ravfogel et al. (2019) note, “[m]ost of
the work so far has focused on English.” Moreover,
these studies have almost always focused on train-
ing scenarios where a large number of in-language
sentences are available.

In this work, we aim to find a prior distribution
over network parameters that generalize well for
human language. The recent vein of research on
the inductive biases of neural nets implicitly as-
sumes a uniform (unnormalizable) prior over the
space of neural network parameters (Ravfogel et al.,
2019, inter alia). In contrast, we take a Bayesian-
updating approach and construct a suitable prior
by approximating the posterior distribution over
the network parameters conditioned on the data
from a sample of seen training languages using
the Laplace method (Azevedo-Filho and Shachter,
1994). The posterior distribution serves as a prior
for maximum-a-posteriori (MAP) estimation of net-
work parameters for the held-out unseen languages.

The search for a universal prior for linguistic
knowledge is motivated by the notion of Universal
Grammar (UG), originally proposed by Chomsky
(1959). The presence of innate biological prop-
erties of the brain that constrain possible human
languages was posited to explain why human chil-
dren learn human languages so quickly despite the
poverty of the stimulus (Chomsky, 1978; Legate
and Yang, 2002). In turn, UG has been connected
with Greenberg (1963)’s typological universals by
Graffi (1980) and Gilligan (1989): this way, the
patterns observed in cross-lingual variation could
be explained by the language-specific configuration
of an innate set of parameters.

Our study explores the task of character-level,
open-vocabulary language modeling to allow for in-
tercomparability between the performance of differ-
ent models across different languages (Gerz et al.,
2018a,b; Cotterell et al., 2018; Mielke et al., 2019).
We run experiments under several regimes of data
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scarcity for the held-out languages (zero-shot, few-
shot, and joint multilingual learning) over a sample
of 77 typologically diverse languages.

Realistically, a model should not be completely
in the dark about held-out languages, as coarse-
grained features about general linguistic properties
are documented for most world’s languages and
available in typological databases such as URIEL
(Littell et al., 2017). Hence, we also explore a
regime where we condition the universal prior over
the weights on typological side information. In
particular, we consider concatenating typological
features to hidden states (Östling and Tiedemann,
2017) and generating the network parameters based
on the typological features (Platanios et al., 2018).

Empirically, given the results of our study, we
offer two findings. The first is that neural recur-
rent models with a universal prior significantly out-
perform baselines with uninformative priors both
in zero-shot and few-shot training settings. Sec-
ondly, conditioning on typological features further
reduces bytes per character in the few-shot setting,
but we report negative results for the zero-shot set-
ting, possibly due to some inherent limitations of
typological databases (Ponti et al., 2018a).

The study of low-resource language modelling
also has a practical impact. According to Simons
(2017), 45.71% of the world’s languages do not
have written texts available. The situation is even
more dire for their digital footprint. As of March
2015, just 40 out of the 188 languages documented
on the Internet accounted for 99.99% of the web
pages.1 And as of April 2019, Wikipedia is trans-
lated only in 304 out of the 7097 existing languages.
What is more, Kornai (2013) prognosticates that the
digital divide will act as a catalyst for the extinction
of many of the world’s languages. The transfer of
language technology may help reverse this course
and give space to unrepresented communities.

2 LSTM Language Models

In this work, we address the task of character-level
language modeling. Whereas word lexicalization
is mostly arbitrary across languages, phonemes al-
low for transfer of universal constraints on phono-
tactics2 and language-specific sequences that may
be shared across languages, such as borrowings
and genetically related words (Brown et al., 2008).

1https://w3techs.com/technologies/
overview/content_language/all

2E.g. with few exceptions (Evans and Levinson, 2009, sec.
2.2.2), the basic syllabic structure is vowel–consonant.

Since languages are mostly recorded in text rather
than phonemic symbols (IPA), however, we fo-
cus on characters as a loose approximation of
phonemes.

Let Σ` be the set of characters for language `.
For a collection of languages D, let Σ = ∪`∈DΣ`

be the union of characters in all languages. A uni-
versal, character-level language model is then a
probability distribution over Σ∗.3 Let x ∈ Σ∗ be a
sequence of characters. We write:

p(x | w) =
n∏
t=1

p(xt | x<t,w) (1)

where t is a time step, x0 is a distinguished begin-
ning-of-sentence symbol, w are the parameters,
and every sequence x ends with a distinguished
end-of-sentence symbol.

We implement character-level language models
with Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997). These en-
code the entire history x<t as a fixed-length vector
ht by manipulating a memory cell ct through a set
of gates. Then we define

p(xt | x<t,w) = softmax(Wht + b). (2)

We tie input and output embeddings following Mer-
ity et al. (2018). The parameters w are typically
optimized to maximize the likelihood of token in-
put sequences. LSTMs have an advantage over other
recurrent architectures as memory gating mitigates
the problem of vanishing gradients and captures
long-distance dependencies (Pascanu et al., 2013).

3 Neural Language Modeling with a
Universal Prior

The fundamental hypothesis of this work is that
there exists a prior p(w) over the weights of a neu-
ral language model that places high probability on
networks that describe human-like languages. The
inductive bias in such a prior will facilitate the train-
ing of language models for unseen languages. Our
goal is to estimate the prior as the posterior dis-
tribution over the weights of a language model of
seen languages. Taking a Bayesian approach, with
Dt as the set of training languages, the posterior

3Note that Σ is also augmented with punctuation and white
space, and distinguished beginning-of-sequence and end-of-
sequence symbols, respectively.
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over weights is given by Bayes’ rule:

p(w | Dt)︸ ︷︷ ︸
posterior

∝
∏
`∈Dt

p(x` | w)︸ ︷︷ ︸
likelihood

× p(w)︸ ︷︷ ︸
prior

(3)

Computation of the posterior p(w | D) is woefully
intractable: recall that each p(x | w) is in our set-
ting an LSTM language model, like the one defined
in eq. (2). We take the prior to be a Gaussian, i.e.

p(w) =
1√

2πσ2
exp

(
− 1

2σ2
||w||22

)
(4)

with zero mean and covariance matrix σ2 I . Here,
we opt for a simple approximation to the posterior,
using the classic Laplace method (Azevedo-Filho
and Shachter, 1994). This method has recently
been applied to other transfer learning tasks in the
neural network literature (Kirkpatrick et al., 2017;
Kochurov et al., 2018; Ritter et al., 2018).

In §3.1, we first introduce the Laplace method,
which approximates the posterior with a Gaus-
sian.4 The mean and covariance matrix are chosen
through an optimization-based procedure, so it is
amenable to computation with backpropagation, as
detailed in §3.2. Finally, we describe how to use
this distribution as a prior to perform maximum-a-
posteriori inference over new data in §3.3.

3.1 Laplace Method

First, we (locally) maximize the log-likelihood of
the data in all the training languages plus the prior:5

L(w) =
∑
`∈Dt

log p(x` | w) + log p(w) (5)

We note that this is equivalent to the log-posterior
up to an additive constant, i.e.,

log p(w | Dt) = L(w)− log p(x`) (6)

where the constant log p(x`) is the log-normalizer
for the posterior by the Bayes’ rule. Let w? be a
local maximizer of L.6 We now approximate the

4Note that, in general, the true posterior is multi-modal.
The Laplace method instead approximates it with a unimodal
distribution.

5In this case, we provide an uninformative priorN (0, 1).
6In practice, non-convex optimization is only guaranteed

to reach a critical (saddle) point. However, the derivation of
Laplace’s method assumes we do reach a local maximizer.

log-posterior with a second-order Taylor expansion
around the local maximizer w?:

log p(w | Dt) (7)

≈ L(w?) +
1

2
(w −w?)>H (w −w?)

where H is the Hessian matrix we have omitted the
first-order term, since the gradient ∇L at the local
maximizer w? is zero. This quadratic approxima-
tion to the log-posterior implies the approximate
posterior is Gaussian. This can be seen by expo-
nentiating both sides in eq. (7):

p(w | Dt) ∝

exp

(
1

2
(w −w?)>H (w −w?)

)
(8)

where L(w?) and log p(x`) are absorbed into the
Gaussian’s normalization constant, which may be
computed analytically. Because w? is a local maxi-
mizer, H is a negative-definite matrix. In principle,
computing the Hessian is possible through running
backpropagation twice: This yields a matrix with
d2 entries. However, in practice, this is not possi-
ble. First, running backpropagation twice is tedious.
Second, we can not easily store a matrix with d2

entries since d is the number of parameter in the
neural language model.

3.2 Approximating the Hessian

To cut the computation down to one pass, we ex-
ploit a property from theoretical statistics: Namely,
that the Hessian of the log-likelihood bears a close
resemblance to a quantity known as the Fisher in-
formation matrix. This connection allows us to de-
velop a more efficient algorithm that approximates
the Hessian with one pass of backpropagation.

We derive this approximation to the Hessian of
L(w) here. First, we note that due to the linearity
of∇2, we have

H = ∇2L(w) (9)

= ∇2

(∑
`∈D

log p(x` | w) + log p(w)

)
(10)

=
∑
`∈D
∇2 log p(x` | w)︸ ︷︷ ︸

likelihood

+∇2 log p(w)︸ ︷︷ ︸
prior

(11)

We discuss each term individually. First, to approx-
imate the likelihood term, we draw on the relation
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between the Hessian and the Fisher information ma-
trix. A basic fact from information theory (Cover
and Thomas, 2006) gives us that the Fisher infor-
mation matrix may be written in two equivalent
ways:

−Ex`

[
∇2 log p(x` | w)

]
(12)

= Ex`

[
∇ log p(x` | w)∇ log p(x` | w)>

]
︸ ︷︷ ︸

expected Fisher information matrix

Note that the integral over all possible languages x`

is a discrete summation, so we may exchange sum-
mands and derivatives such as is required for the
proof. This equality suggests a natural approxima-
tion of the expected Fisher information matrix—the
observed Fisher information matrix F

− 1

|D|
∑
`∈D
∇2 log p(x` | w) (13)

≈ 1

|D|
∑
`∈D
∇ log p(x` | w)∇ log p(x` | w)>︸ ︷︷ ︸
observed Fisher information matrix

which is tight in the limit as |D| → ∞ due to the
law of large numbers. Indeed, when we have a
large number of training exemplars, the average
of the outer products of the gradients will be a
good approximation to the Hessian. However, even
this approximation still has d2 entries, which is far
too many to be practical. Thus, we further use a
diagonal approximation. We denote the diagonal
of the observed Fisher information matrix as the
vector f ∈ Rd where we define

fi =
∑
`∈D

(
∇ log p(x` | w)

)2
i

(14)

which yields the matrix diag(F).
Computation of the Hessian of the prior term is

more straight-forward and does not require approx-
imation. Indeed, in the general case it is the inverse
covariance matrix, which means

∇2 log p(w) =
1

σ2
I (15)

This yields the final diagonal approximation to the
Hessian

H̃ = −diag(f) +
1

σ2
I (16)

3.3 MAP Inference
Finally, we use the posterior p(w | Dt) as the
prior over model parameters for training a language
model on new, held-out languages. We incorporate
this prior through MAP estimation, by augmenting
the optimization of the likelihood of the new data
with a regularization term. This is only an approx-
imation to fully Bayesian estimators, because it
does not characterize the entire distribution of the
posterior, but rather just the mode (Gelman et al.,
2013).

In the zero-shot setting, this boils down to using
the mean of the prior as network parameters. In
the few-shot setting instead, we assume that some
data for the target language ` ∈ De is available, so
we treat the posterior as a prior over the weights
and update the weights accordingly. In particular,
we maximize the log-likelihood of the target lan-
guage data and the regularizer derived through the
Laplace approximation scaled by a factor of λ:

L(w) =
∑
`∈De

log p(x` | w) (17)

+
λ

2
(w −w?)>H̃ (w −w?)

As a baseline for the UNIV prior, we perform MAP
inference with an uninformative prior N (0, 1). We
label this model NINF. In the zero-shot setting, this
means that the parameters are sampled from the
uninformative prior. In the few-shot setting, we
maximize the likelihood of the data for the held-
out language while minimizing a regularizer that
reduces to λ

2 ||1� (w− 0)||22 = λ
2 ||w||

2
2. Note that,

owing to the uninformative prior, the uninformed
NINF models do not have access to the posterior
of the weights given the data from the training
languages.

Moreover, we consider a common approach for
neural transfer learning (Ruder, 2017), which lies
outside the Bayesian framework, as an additional
baseline. Namely, after optimizing the weights on
the training data, those are simply fine-tuned on the
held-out data, until finding a new local maximizer.
We label this method FITU.

4 Language Modeling Conditioned on
Typological Features

Realistically, the prior over network weights should
also be augmented with side information about the
general properties of the held-out language to be
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learnt, if such information is available. In fact, lin-
guists have documented such information even for
languages without plain digital texts available, and
stored it in publicly accessible databases (Croft,
2002; Dryer and Haspelmath, 2013). This informa-
tion usually takes the form of features that express
either: i) the formal strategies each language em-
ploys to express a specific semantic / functional
construction (Croft et al., 2017). For instance, En-
glish expresses the construction of nominal predi-
cation with a copula strategy; or ii) the presence or
absence of specific phenomena. For instance, En-
glish possesses a grammatical category for tense.

The usage of such features to inform neural NLP
models is still scarce, partly because the evidence in
their favour is mixed (Ponti et al., 2018b,a). In this
work, we propose a way to distantly supervise the
model with this side information effectively. We
extend our non-conditional language model with a
universal prior (BARE) to a series of architectures
conditioned on language-specific properties that
have been proposed in previous work (Östling and
Tiedemann, 2017; Platanios et al., 2018). A fun-
damental difference, however, is that these learn
such properties in an end-to-end fashion from the
data in a joint multilingual learning setting. Obvi-
ously, this is not feasible for the zero-shot setting
and unreliable for the few-shot setting. Rather, we
represent languages with their typological feature
vector, which we assume readily available both for
training and for held-out languages.

Let t` ∈ [0, 1]f be a vector of f typological fea-
tures for language ` ∈ Dt ∪ De. We reinterpret the
conditional language models within the Bayesian
framework as estimating the posterior probability∏

`∈D
p(x` | w, t`)× p(w | t`). (18)

We now outline several candidate methods to
estimate p(w | t`). We first encode the fea-
tures through a non-linear transformation f(t) =
ReLU(Wt + b). A first variant, labeled OEST, is
inspired by Östling and Tiedemann (2017). Assum-
ing the standard LSTM architecture where ot is the
output gate and ct is the memory cell, we modify
the equation for the hidden state ht as follows:

ht = ot � tanh(ct)⊕ f(t`) (19)

In other words, we concatenate the typological fea-
tures to all the hidden states.

Moreover, we experiment with a second variant
where the parameters of the LSTM are generated
by a meta-network (i.e., a simple linear layer with
weight W d×|w|) that transforms t` into w. This
approach, labeled PLAT, is inspired by Platanios
et al. (2018), with the additional difference that
they generate parameters for an encoder-decoder.

On the other hand, we do not consider the condi-
tional model proposed by Sutskever et al. (2014),
where f(t) would be used to initialize the values
for h0 and c0. During evaluation, h and c are never
reset on sentence boundaries, so this model would
find itself at disadvantage because it would require
to erase the sequential history cyclically.

5 Experimental Setup

Data Our text data source is the Bible corpus7

(Christodouloupoulos and Steedman, 2015).8 We
exclude languages that are not written in the Latin
script and duplicate languages, resulting in a sub-
sample of 77 languages.9 Since not all translations
cover the entire Bible, they vary in size. The text
from each language is split into training, develop-
ment, and evaluation sets with a ratio of 80/10/10%.
Moreover, for the MAP inference in the few-shot
setting, we randomly sample 100 sentences from
each training set.

We obtain the typological feature vectors from
URIEL (Littell et al., 2017).10 We include the fea-
tures related to 3 levels of linguistic structure, for
a total of 245 features: i) syntax, e.g. whether the
subject tends to precede the object. These origi-
nate from the World Atlas of Language Structures
(Dryer and Haspelmath, 2013) and the Syntactic
Structures of the World’s Languages (Collins and
Kayne, 2009); ii) phonology, e.g. whether a lan-
guage has distinctive tones; iii) phonological in-
ventories, e.g. whether a language possesses the
retroflex approximant /õ/. Both ii) and iii) were
originally collected in PHOIBLE (Moran et al.,
2014). Missing values were inferred as a weighted

7http://christos-c.com/bible/
8This corpus is arguably representative of the variety of

the world’s languages: it covers 28 genealogical families,
several geographic areas (16 languages from Africa, 23 from
Americas, 26 from Asia, 33 from Europe, 1 from Oceania),
and endangered or poorly documented languages (39 with less
than a million speakers).

9These are identified with their 3-letter ISO 639-3 codes
throughout the paper. Consult the Appendix in the supplemen-
tal material for the full list of language names mapped to ISO
639-3 codes.

10http://www.cs.cmu.edu/∼dmortens/uriel.html
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average of the 10 nearest neighbour languages in
terms of family, geography, and typology.

Language Model We implement the LSTM fol-
lowing the best practices and hyper-parameter set-
tings indicated for language modelling by Merity
et al. (2017, 2018). In particular, we optimize the
weights with Adam (Kingma and Ba, 2014) and a
non-monotonically decayed learning rate: its value
is initialized as 10−4 and decreases by a factor of
10 every 1/3rd of the total epochs. The maximum
number of epochs amounts to 6 for Dt, with early
stopping based on development set performance,
and the maximum number of epochs is 25 for De.

Moreover, we extend the model to multilingual
joint training. For each iteration, we sample a
language proportionally to the amount of its data:
p(`) ∝ |Dt|, in order not to exhaust examples from
resource-lean languages in the early phase of train-
ing. Then, we sample without replacement fromDt
a mini-batch of 128 sequences with a variable max-
imum sequence length.11 This length is sampled
from a distribution m ∼ N (µ = 125, σ = 5).12

Each epoch comes to an end when all the data se-
quences have been sampled.

We apply several techniques of dropout for regu-
larization, including variational dropout (Gal and
Ghahramani, 2016), which applies an identical
mask to all time steps, with p = 0.1 for charac-
ter embeddings and intermediate hidden states and
p = 0.4 for the output hidden states. DropConnect
(Wan et al., 2013) is applied to the model parame-
ters U of the first hidden layer with p = 0.2.

Following Merity et al. (2017), the underlying
language model architecture consists of 3 hidden
layers with 1,840 hidden units each. The dimen-
sionality of the character embeddings is 400. For
conditional language models, the dimensionality of
f(t) is set to 115 with the OEST method based on
concatenation (Östling and Tiedemann, 2017), and
4 (due to memory limitations) in the PLAT method
based on meta-networks (Platanios et al., 2018).
For the regularizer in eq. (17), we perform grid
search over the hyperparameter λ: we finally select
a value of 105 for UNIV and 10−5 for NINF.

Regimes of Data Paucity We explore different
regimes of data paucity for the held-out languages:
• ZERO-SHOT transfer setting: we split the sample

11This avoids creating insurmountable boundaries to back-
propagation though time (Tallec and Ollivier, 2017).

12The learning rate is therefore scaled by m
µ

and D
L·D` .

of 77 languages into 4 subsets. The languages in
each subset are held out in turn, and we use their
test set for evaluation.13 For each subset, we further
randomly choose 5 languages whose development
set is used for validation. The training set of the
rest of the languages is used to estimate a prior over
network parameters via the Laplace approximation.
• FEW-SHOT transfer setting: on top of the zero-
shot setting, we use the prior to perform MAP in-
ference over a small sample (100 sentences) from
the training set of each held-out language.
• JOINT multilingual setting: De includes the full
training set for all 77 languages, including held-out
languages. This works as a ceiling for the expected
performance of language transfer models.

6 Results and Analysis

The results for our experiments are grouped in Ta-
ble 1 for the ZERO-SHOT regime, Table 3 for the
FEW-SHOT regime, and in Table 2 for the JOINT

multilingual regime. The scores represent Bits Per
Character (BPC) (Graves, 2013): this metric is sim-
ply defined as the average negative log-likelihood
of test data divided by log 2. We compare the re-
sults along the following dimensions:

Informativeness of Prior Our main result is that
the UNIV prior consistently outperforms the NINF

prior across the board and by a large margin in both
ZERO-SHOT and FEW-SHOT settings. The scores
for the naı̈vest baseline, ZERO-SHOT NINF BARE,
are considerably worse than with both ZERO-SHOT

UNIV models: this suggests that the transfer of
information on character sequences is meaningful.
The lowest BPC reductions are observed for lan-
guages like Vietnamese (15.94% error reduction)
or Highland Chinantec (19.28%) where character
inventories or distributions are unmatched in other
languages. Moreover, the ZERO-SHOT UNIV mod-
els are on a par or better than even the FEW-SHOT

NINF models. In other words, the most helpful su-
pervision comes from a universal prior rather than
from a small in-language sample of sentences. This
demonstrates that the UNIV prior is truly imbued
with universal linguistic knowledge that facilitates
learning of previously unseen languages.

The averaged BPC score for the other baseline
without a prior, FINE-TUNE is 3.007 for FEW-SHOT

OEST, to be compared with 2.731 BPC of UNIV.
13Holding out each language individually would not in-

crease the sample of training languages significantly, while
inflating the number of experimental runs needed.
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NINF UNIV NINF UNIV NINF UNIV
BARE BARE OEST BARE BARE OEST BARE BARE OEST

acu 8.491 3.244 3.472 fra 8.587 4.066 4.467 por 8.491 3.751 4.219
afr 8.607 3.229 3.995 gbi 8.610 3.823 3.912 pot 8.600 5.336 5.359
agr 8.603 3.779 3.946 gla 8.490 4.179 3.956 ppk 8.596 4.506 4.599
ake 8.602 5.753 6.281 glv 8.606 4.349 4.612 quc 8.605 4.063 4.118
alb 8.490 4.571 5.017 hat 8.594 4.186 4.620 quw 8.488 3.560 4.027
amu 8.610 4.912 5.959 hrv 8.606 4.050 3.441 rom 8.603 3.669 4.056
bsn 8.591 5.046 5.695 hun 8.493 4.836 5.030 ron 8.588 5.011 5.690
cak 8.603 4.068 4.326 ind 8.604 3.796 4.311 shi 8.601 5.496 5.946
ceb 8.488 3.668 3.850 isl 8.596 5.039 5.629 slk 8.491 4.304 4.512
ces 8.600 4.369 4.461 ita 8.605 4.023 3.752 slv 8.604 3.661 4.106
cha 8.594 4.366 4.353 jak 8.488 4.051 4.793 sna 8.596 4.146 4.283
chq 8.598 6.940 7.623 jiv 8.601 3.866 4.039 som 8.614 4.159 4.470
cjp 8.494 4.600 4.985 kab 8.596 4.659 5.400 spa 8.489 3.645 4.020
cni 8.604 3.740 4.651 kbh 8.607 4.663 4.950 srp 8.604 3.414 3.437
dan 8.593 3.471 4.599 kek 8.491 4.666 4.944 ssw 8.593 4.064 3.780
deu 8.599 4.102 4.214 lat 8.601 3.703 4.093 swe 8.605 4.210 3.892
dik 8.490 4.447 4.533 lav 8.588 5.415 6.130 tgl 8.487 3.639 3.878
dje 8.603 3.725 3.996 lit 8.602 4.794 4.853 tmh 8.602 4.830 4.711
djk 8.592 3.663 3.874 mam 8.488 4.292 5.076 tur 8.592 5.574 5.935
dop 8.609 5.950 7.351 mri 8.606 3.440 4.074 usp 8.604 4.127 4.337
eng 8.488 3.816 4.028 nhg 8.588 4.323 4.450 vie 8.490 7.137 7.484
epo 8.605 3.818 4.116 nld 8.601 3.851 4.326 wal 8.605 4.027 4.585
est 8.606 6.807 8.261 nor 8.492 3.174 3.902 wol 8.607 4.290 4.420
eus 8.605 4.118 4.321 pck 8.603 4.053 4.233 xho 8.602 4.171 4.276
ewe 8.490 5.049 5.497 plt 8.603 4.364 4.648 zul 8.488 3.218 4.109
fin 8.604 4.308 4.338 pol 8.601 5.158 5.556 ALL 8.572 4.343 4.691

Table 1: BPC scores (lower is better) for the ZERO-SHOT learning setting, with the uninformed prior (NINF) and
the universal prior (UNIV): see §2 for the descriptions of the priors. Note that for the former there is no difference
between a BARE model and a conditional model (OEST). Colors define the split in which each language (rows)
has been held out.

BARE OEST BARE OEST BARE OEST BARE OEST
acu 1.413 1.308 eng 1.355 1.350 kek 1.131 1.133 slk 1.844 1.754
afr 1.471 1.457 epo 1.471 1.450 lat 1.792 1.758 slv 1.848 1.793
agr 1.701 1.581 est 0.333 0.150 lav 2.146 1.931 sna 1.489 1.457
ake 1.453 1.377 eus 1.763 1.635 lit 1.895 1.833 som 1.477 1.468
alb 1.590 1.552 ewe 2.084 1.944 mam 1.654 1.548 spa 1.559 1.525
amu 1.402 1.340 fin 1.716 1.680 mri 1.342 1.330 srp 1.832 1.756
bsn 1.232 1.172 fra 1.465 1.432 nhg 1.302 1.238 ssw 1.890 1.697
cak 1.281 1.221 gbi 1.398 1.331 nld 1.621 1.601 swe 1.619 1.595
ceb 1.193 1.185 gla 3.403 1.839 nor 1.623 1.590 tgl 1.221 1.210
ces 1.872 1.795 glv 1.932 1.644 pck 1.731 1.711 tmh 2.786 2.301
cha 1.934 1.790 hat 1.480 1.454 plt 1.296 1.286 tur 1.801 1.773
chq 1.265 1.220 hrv 2.059 1.974 pol 1.743 1.698 usp 1.290 1.214
cjp 1.706 1.565 hun 1.887 1.847 por 1.586 1.552 vie 1.648 1.637
cni 1.348 1.290 ind 1.356 1.336 pot 2.484 2.144 wal 1.561 1.457
dan 1.727 1.693 isl 1.845 1.808 ppk 1.538 1.439 wol 2.053 1.890
deu 1.532 1.512 ita 1.615 1.583 quc 1.393 1.291 xho 1.680 1.634
dik 1.979 1.835 jak 1.415 1.322 quw 1.498 1.418 zul 1.880 1.620
dje 1.570 1.550 jiv 1.705 1.572 rom 1.706 1.587 ALL 1.652 1.550
djk 1.515 1.435 kab 1.955 1.791 ron 1.572 1.537
dop 1.810 1.676 kbh 1.436 1.371 shi 2.057 1.903

Table 2: BPC results (lower is better) for the JOINT learning setting, with the uninformed NINF prior. These results
constitute the expected ceiling performance for language transfer models.
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NINF FITU UNIV NINF FITU UNIV
BARE OEST BARE OEST BARE OEST BARE OEST

acu 4.203 2.117 2.551 2.136 kbh 4.644 2.362 2.434 2.288
afr 4.423 3.620 3.042 2.773 kek 4.613 2.809 3.015 2.714
agr 4.268 3.282 3.403 2.457 lat 4.239 4.342 3.416 3.202
ake 4.318 2.168 2.238 2.180 lav 4.765 2.867 3.842 2.917
alb 4.544 3.186 3.302 3.084 lit 4.769 3.752 3.592 3.668
amu 4.486 2.820 3.948 2.080 mam 4.525 2.274 2.873 2.363
bsn 4.546 1.861 2.678 1.850 mri 3.795 3.482 3.010 2.459
cak 4.426 1.994 2.053 1.956 nhg 4.373 2.004 2.480 1.965
ceb 4.084 2.562 2.595 2.470 nld 4.469 3.008 2.908 2.903
ces 4.984 4.651 4.190 3.680 nor 4.453 3.152 2.954 3.054
cha 4.329 2.546 2.899 2.525 pck 4.246 4.011 3.532 3.030
chq 4.941 1.948 2.078 1.963 plt 4.201 2.532 2.742 2.490
cjp 4.424 2.389 2.880 2.393 pol 4.853 3.852 3.620 3.788
cni 4.185 2.797 3.018 1.982 por 4.446 3.231 3.198 3.098
dan 4.719 3.211 3.127 3.180 pot 4.299 3.773 3.944 2.763
deu 4.589 3.103 3.007 2.953 ppk 4.439 2.220 2.736 2.236
dik 4.380 2.640 3.020 2.667 quc 4.538 2.154 2.242 2.108
dje 4.382 3.815 3.398 2.898 quw 4.223 2.196 2.547 2.158
djk 4.130 2.064 2.446 2.085 rom 4.378 3.121 3.257 2.455
dop 4.508 2.506 2.562 2.448 ron 4.579 3.273 3.734 3.216
eng 4.436 2.808 2.913 2.719 shi 4.509 2.963 3.092 2.970
epo 4.469 3.609 3.511 2.825 slk 4.873 3.722 3.812 3.631
est 3.618 1.952 2.487 1.962 slv 4.633 4.630 3.527 3.501
eus 4.354 2.628 2.705 2.567 sna 4.455 2.910 3.114 2.870
ewe 4.590 2.806 3.336 2.786 som 4.257 3.048 2.908 2.934
fin 4.385 4.339 3.830 3.312 spa 4.507 3.223 3.149 3.090
fra 4.551 3.086 3.276 2.981 srp 4.561 4.467 3.367 3.380
gbi 4.250 2.138 2.170 2.054 ssw 4.370 2.611 2.924 2.570
gla 4.159 2.377 2.835 2.395 swe 4.657 3.266 3.184 3.177
glv 4.346 3.523 3.702 2.644 tgl 4.060 2.546 2.592 2.436
hat 4.468 2.929 3.048 2.849 tmh 4.618 4.087 4.218 3.125
hrv 4.615 3.845 3.608 3.588 tur 4.846 3.509 4.282 3.552
hun 4.806 3.589 3.709 3.522 usp 4.529 2.114 2.189 2.073
ind 4.377 3.317 3.258 2.420 vie 5.185 3.018 3.751 3.015
isl 4.744 3.174 3.703 3.101 wal 4.398 2.986 3.623 2.278
ita 4.370 3.384 3.196 3.178 wol 4.621 2.898 2.968 2.826
jak 4.532 2.113 2.650 2.126 xho 4.561 3.415 3.208 3.289
jiv 4.338 3.413 3.475 2.504 zul 4.564 2.625 2.866 2.622
kab 4.649 2.783 3.574 2.800 ALL 4.467 3.007 3.120 2.731

Table 3: BPC scores (lower is better) for the FEW-SHOT learning setting, with NINF, FITU and UNIV priors.
Colors define the split in which each language (rows) has been held out.

Note that fine-tuning is an extremely competitive
baseline, as it lies at the core of most state-of-the-
art NLP models (Peters et al., 2019). Hence, this
result demonstrates the usefulness of a Bayesian
treatment of transfer learning.

Conditioning on Typological Information An-
other important result regards the fact that condi-
tioning language models on typological features
yield opposite effects in the ZERO-SHOT and FEW-
SHOT settings. By comparing the BARE and OEST

models’ columns in Table 1, the non-conditional
baseline BARE is superior for 71 / 77 languages
(the exceptions being Chamorro, Croatian, Italian,

Swazi, Swedish, and Tuareg). On the other hand,
the same columns in Table 3 and Table 2 reveal
an opposite pattern: OEST outperforms the BARE

baseline in 70 / 77 languages. Finally, OEST sur-
passes the BARE baseline in the JOINT setting for
76 / 77 languages (save Q’eqchi’).

We also also take into consideration an alter-
native conditioning method, namely PLAT. For
clarity’s sake, we exclude this batch of results from
Table 1 and Table 3, as this method proves to be
consistently worse than OEST. In fact, the average
BPC of PLAT amounts to 5.479 in the ZERO-SHOT

setting and 3.251 in the FEW-SHOT setting. These
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scores have to be compared with 4.691 and 2.731
for OEST, respectively.

The possible explanation behind the mixed evi-
dence on the success of typological features points
to some intrinsic flaws of typological databases.
Ponti et al. (2018a) has shown how the feature gran-
ularity may be too coarse to liaise with data-driven
probabilistic models, and the limited coverage of
features results in noise introduced by the inferred
missing values. As a result, language models seem
to be damaged by typological features in absence
of data, whereas they find a way to follow their
lead when at least a small sample of sentences is
available in the FEW-SHOT setting.

Data Paucity Different regimes of data paucity
display uneven levels of performance. The best
models for each setting (ZERO-SHOT UNIV BARE,
FEW-SHOT UNIV OEST, and JOINT OEST) reveal
large gaps between their average scores. Hence,
in-language supervision should be still considered
unsubstitutable, and transferred language models
still lag behind their resource-rich equivalents.

7 Related Work

LSTMs have been probed for an inductive bias
in capturing syntactic dependencies (Linzen et al.,
2016) and grammaticality judgements (Marvin and
Linzen, 2018; Warstadt et al., 2018). Ravfogel et al.
(2019) have extended the scope of this analysis to
typologically different languages through synthetic
variations of English. In this work, we aim to model
the inductive bias explicitly by constructing a prior
over the space of neural network parameters.

Few-shot word-level language modelling for
truly under-resourced languages such as Yongning
Na has been investigated by Adams et al. (2017)
with the aid of a bilingual lexicon. Vinyals et al.
(2016) and Munkhdalai and Trischler (2018) pro-
posed novel architectures (Matching Networks and
LSTMs augmented with Hebbian Fast Weights, re-
spectively) for rapid associative learning in English,
and evaluated them in few-shot cloze tests. In this
respect, our work is novel in pushing the problem
to its most complex formulation, zero-shot infer-
ence, and in taking into account the largest sample
of languages for language modelling to date.

In addition to the set of standard architectures
considered in our work, there are also alternatives
to conditional language modelling. Kalchbren-
ner and Blunsom (2013) used encoded features
as additional biases in recurrent layers. Kiros et al.

(2014) put forth a log-bilinear model that allows
for a “multiplicative interaction” between hidden
representations and input features (such as images).
With a similar device, but a different gating method,
Tsvetkov et al. (2016) trained a phoneme-level joint
multilingual model of words conditioned on typo-
logical features from Moran et al. (2014).

The use of the Laplace method for neural trans-
fer learning has been proposed by Kirkpatrick et al.
(2017), inspired by synaptic consolidation in neuro-
science to avoid catastrophic forgetting. Kochurov
et al. (2018) tackled the problem of continuous
learning from independent data portions for a single
fixed task by approximating the posterior probabili-
ties through stochastic variational inference. Ritter
et al. (2018) substitute diagonal Laplace approxima-
tion with a Kronecker factored method, leading to
better uncertainty estimates. Finally, the regularizer
proposed by Duong et al. (2015) for cross-lingual
dependency parsing can be interpreted as a prior
for Maximum A Posteriori estimation where the
covariance is an identity matrix.

8 Conclusions

In this work, we proposed a Bayesian approach
to cross-lingual language modeling transfer. We
created a universal prior over neural network
weights that is capable of generalizing well to
new languages riddled by data paucity, by Laplace-
approximating the posterior of the weights condi-
tioned on the data from a sample of training lan-
guages. Based on the results of character-level
language modelling on a sample of 77 languages,
we demonstrated the superiority of the universal
prior over uninformative priors and uniform pri-
ors (i.e., the widespread fine-tuning approach) in
both zero-shot and few-shot settings. Moreover,
we showed that adding language-specific side in-
formation drawn from typological databases to the
universal prior further increases the levels of per-
formance in the few-shot regime. While we also
showed that language transfer still lags behind mul-
tilingual joint learning when sufficient in-language
data are available, our work is the first step towards
bridging this gap in the future.
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Daniela Gerz, Ivan Vulić, Edoardo Maria Ponti, Roi
Reichart, and Anna Korhonen. 2018b. On the rela-
tion between linguistic typology and (limitations of)
multilingual language modeling. In Proceedings of
EMNLP, pages 316–327.

Gary Martin Gilligan. 1989. A cross-linguistic ap-
proach to the pro-drop parameter. Ph.D. thesis, Uni-
versity of Southern California.

Giorgio Graffi. 1980. Universali di Greenberg e gram-
matica generativa in la nozione di tipo e le sue arti-
colazioni nelle discipline del linguaggio. Lingua e
Stile Bologna, 15(3):371–387.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. CoRR, abs/1308.0850.

Joseph H. Greenberg. 1963. Some universals of gram-
mar with particular reference to the order of mean-
ingful elements. Universals of Language, 2:73–113.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
EMNLP, pages 1700–1709.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences,
114(13):3521–3526.

Ryan Kiros, Ruslan Salakhutdinov, and Rich Zemel.
2014. Multimodal neural language models. In Pro-
ceedings of ICML, pages 595–603.

Max Kochurov, Timur Garipov, Dmitry Podoprikhin,
Dmitry Molchanov, Arsenii Ashukha, and Dmitry
Vetrov. 2018. Bayesian incremental learning for
deep neural networks. In Proceedings of ICLR
(Workshop Papers).

2909

http://www.aclweb.org/anthology/E17-1088
http://www.aclweb.org/anthology/E17-1088
http://www.aclweb.org/anthology/E17-1088
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=484&proceeding_id=10
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=484&proceeding_id=10
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=484&proceeding_id=10
https://www.degruyter.com/view/j/stuf.2008.61.issue-4/stuf.2008.0026/stuf.2008.0026.xml
https://www.degruyter.com/view/j/stuf.2008.61.issue-4/stuf.2008.0026/stuf.2008.0026.xml
https://www.degruyter.com/view/j/stuf.2008.61.issue-4/stuf.2008.0026/stuf.2008.0026.xml
http://www.biolinguagem.com/ling_cog_cult/chomsky_1958_skinners_verbalbehavior.pdf
http://www.biolinguagem.com/ling_cog_cult/chomsky_1958_skinners_verbalbehavior.pdf
https://dl.acm.org/citation.cfm?id=2767953
https://dl.acm.org/citation.cfm?id=2767953
http://sswl.railsplayground.net/
http://sswl.railsplayground.net/
https://www.aclweb.org/anthology/N18-2085
https://www.aclweb.org/anthology/N18-2085
https://www.cambridge.org/core/books/typology-and-universals/D09986F35C708113378BD1B76073E258
http://ceur-ws.org/Vol-1779/05croft.pdf
http://ceur-ws.org/Vol-1779/05croft.pdf
http://wals.info/
https://www.aclweb.org/anthology/P15-2139
https://www.aclweb.org/anthology/P15-2139
https://www.princeton.edu/~adele/Princeton_Construction_Site/pcs.sites2/Evans-Levinson09_preprint.pdf
https://www.princeton.edu/~adele/Princeton_Construction_Site/pcs.sites2/Evans-Levinson09_preprint.pdf
https://www.princeton.edu/~adele/Princeton_Construction_Site/pcs.sites2/Evans-Levinson09_preprint.pdf
https://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
https://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
https://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://www.stat.columbia.edu/~gelman/book/
https://aclweb.org/anthology/Q18-1032
https://aclweb.org/anthology/Q18-1032
https://aclweb.org/anthology/Q18-1032
https://www.aclweb.org/anthology/D18-1029
https://www.aclweb.org/anthology/D18-1029
https://www.aclweb.org/anthology/D18-1029
https://www.scribd.com/document/284722431/A-Cross-linguistic-Approach-to-the-Pro-drop-Parameter
https://www.scribd.com/document/284722431/A-Cross-linguistic-Approach-to-the-Pro-drop-Parameter
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
http://www.fb10.uni-bremen.de/homepages/hackmack/syntax/pdf/Universals_of_Language.pdf
http://www.fb10.uni-bremen.de/homepages/hackmack/syntax/pdf/Universals_of_Language.pdf
http://www.fb10.uni-bremen.de/homepages/hackmack/syntax/pdf/Universals_of_Language.pdf
https://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.8.1735
http://www.aclweb.org/anthology/D13-1176
http://www.aclweb.org/anthology/D13-1176
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
http://www.jmlr.org/proceedings/papers/v32/kiros14.pdf
https://arxiv.org/abs/1802.07329
https://arxiv.org/abs/1802.07329


András Kornai. 2013. Digital language death. PloS
One, 8(10):e77056.

Julie Anne Legate and Charles D. Yang. 2002. Em-
pirical re-assessment of stimulus poverty arguments.
The Linguistic Review, 18(1-2):151–162.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Patrick Littell, David R. Mortensen, Ke Lin, Kather-
ine Kairis, Carlisle Turner, and Lori Levin. 2017.
URIEL and lang2vec: Representing languages as
typological, geographical, and phylogenetic vectors.
In Proceedings of EACL, pages 8–14.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of EMNLP, pages 1192–1202.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing LSTM
language models. arXiv preprint arXiv:1708.02182.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. An analysis of neural language
modeling at multiple scales. arXiv preprint
arXiv:1803.08240.

Sebastian J. Mielke, Ryan Cotterell, Kyle Gorman,
Brian Roark, and Jason Eisner. 2019. What kind of
language is hard to language-model? In Proceed-
ings of ACL, pages 4975–4989.

Steven Moran, Daniel McCloy, and Richard Wright, ed-
itors. 2014. PHOIBLE Online. Max Planck Institute
for Evolutionary Anthropology, Leipzig.

Tsendsuren Munkhdalai and Adam Trischler. 2018.
Metalearning with Hebbian fast weights. arXiv
preprint arXiv:1807.05076.
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