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Abstract

Pimentel et al. (2020b) recently analysed prob-
ing from an information-theoretic perspective.
They argue that probing should be seen as ap-
proximating a mutual information. This led
to the rather unintuitive conclusion that rep-
resentations encode exactly the same informa-
tion about a target task as the original sen-
tences. The mutual information, however, as-
sumes the true probability distribution of a
pair of random variables is known, leading to
unintuitive results in settings where it is not.
This paper proposes a new framework to mea-
sure what we term Bayesian mutual infor-
mation, which analyses information from the
perspective of Bayesian agents—allowing for
more intuitive findings in scenarios with finite
data. For instance, under Bayesian MI we
have that data can add information, process-
ing can help, and information can hurt, which
makes it more intuitive for machine learning
applications. Finally, we apply our framework
to probing where we believe Bayesian mutual
information naturally operationalises ease of
extraction by explicitly limiting the available
background knowledge to solve a task.

1 Introduction

Pimentel et al. (2020b) recently undertook an
information-theoretic analysis of probing. They ar-
gue that probing may be viewed as approximating
the mutual information between a linguistic prop-
erty (e.g., part-of-speech tags) and a contextual
representation (e.g., BERT). Counter-intuitively,
however, due to the data-processing inequality,
contextual representations contain exactly the same
information about any task as the original sentence,
under mild conditions. When viewed under this
lens, the goal of probing is not inherently clear.
One limitation of Pimentel et al.’s analysis is that
it focuses on the mutual information (MI)—to
be of practical application, their argument re-
quires that a probe matches the true distribution

100 101 102 103 104 105

# Data Examples

0

2

4

6

8

E
n
tr

op
y

(b
it

s) −Iθ(R→ T )

Iθ(R→ T )
I(R;T )

Iθ(Dn → Θ)

Hθ(T )

Hθ(T | R)

H(T )

H(T | R)

Figure 1: A smoothed example of Bayesian MI on de-
pendency arc labelling in English.

according to which the data were generated
in the limit of finite training data. In contrast,
our paper formulates an information-theoretic
framework that is compatible both with model
misspecification and the finite data assumption.

In his seminal work, Shannon (1948) occupied
himself with the limit of communication. Indeed,
mutual information can be described as the theo-
retical limit (or upper-bound) of how much infor-
mation can be extracted from one random variable
about another. However, this limit is only achiev-
able when one has full knowledge of these random
variables, including the true probability distribution
according to which they are distributed. In practice,
we will not have access to such information and
it may be difficult to approximate. It follows that
any system with imperfect knowledge of the ran-
dom variable’s true distribution will only be able
to extract a subset of this information.

With this in mind, we propose and motivate an
agent-based framework for measuring information.
We term our quantity Bayesian mutual informa-
tion and show that it generalises Shannon’s MI,
holistically accounting for uncertainty within the
Bayesian paradigm—measuring the amount of in-
formation a rational agent could extract from a
random variable under partial knowledge of the
true distribution. In addition to the definition,
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our paper provides many useful theoretical re-
sults. For instance, we prove that conditioning
does not necessarily reduce Bayesian entropy and
that Bayesian mutual information does not obey
the data-processing inequality. We argue that these
properties make our Bayesian framework ideal for
an analysis of learned representations.

In the empirical portion of our paper, we investi-
gate both part-of-speech tagging and dependency
arc labelling. Moreover, our information-theoretic
measure holistically captures a notion of ease of
extraction, limiting the amount of data available to
solve the task. Intuitively, Bayesian MI shows that
high dimensional representations, such as BERT,
actually hurt performance in the very low-resource
scenario, making less information available to a
Bayesian agent than a simple categorical distribu-
tion. This is because, when little data is available,
these agents overfit to the evidence under weak
priors. In the high-resource scenario of English,
ALBERT dominates the curves, making more in-
formation available than other contextualised em-
bedders. In short, Bayesian mutual information
reconciles the probing literature with its frequently
posed question: how much information can be ex-
tracted from these representations?

2 Background: Information Theory

Information theory (Shannon, 1948; Cover and
Thomas, 2006) provides us with a number of tools
to analyse data and their associated probability
distributions—among which are the entropy and
mutual information. These are traditionally defined
according to a “true” probability distribution, i.e.
p(x) or p(x, y)1 which may not be known, but dic-
tates the behaviour of random variables X and Y .
The atomic unit of information theory is the sur-
prisal, which is defined as follows:

H(X = x) = − log p(x) (1)

Arguably, the most important information-theoretic
definition is its expected value, termed entropy:

H(X)
def
= −

∑
x∈X

p(x) log p(x) (2)

Finally, another important concept is the mutual
information (MI) between two random variables

I(X;Y )
def
= H(X)−H(X | Y ) (3)

1We use uppercase letters to denote random variables (X ,
Y ), lowercase for their instances (x, y), and calligraphic fonts
for their domain space (x ∈ X , y ∈ Y).

Unfortunately, information theory has a few prop-
erties which do not conform to our intuitions about
the mechanics of information in machine learning:

(i) Data Does Not Add Information: The en-
tropy is defined according to a source dis-
tribution p(x). So, if multiple instances of
X are sampled i.i.d. from p(x), access to
a set dN =

{
x(1), . . . , x(N)

}
of such in-

stances cannot provide any information, i.e.
H(X | DN = dN ) = H(X).

(ii) Conditioning Reduces Entropy: Another
basic result from information theory is that
conditioning cannot increase entropy, only
reduce it, i.e. H(X | Y ) ≤ H(X). This
implies datapoints can never be misleading,
which is not true in practice.

(iii) Data Processing Does Not Help: The data
processing inequality states that processing
some random variable with a function f(·)
can never increase how informative it is,
but only reduce its information content, i.e.
I(X; f(Y )) ≤ I(X;Y ).

2.1 Background: Belief Entropy
A related question that arises is how to estimate in-
formation in scenarios where the true distribution is
not known. For instance, what is the surprisal of a
learning agent with a belief pθ(x) who encounters
an instance x? The straightforward answer would
be to use eq. (1)—nonetheless, this agent does not
know the true distribution p(x). This agent’s sur-
prisal is usually taken according to its belief:

Hb(X = x) = − log pθ(x) (4)

Similarly, this agent’s entropy has been historically
defined exclusively according to this belief distri-
bution (Gallistel and King, 2011):

Hb(X)
def
= −

∑
x∈X

pθ(x) log pθ(x) (5)

We term this the belief-entropy. We can further
extend this to a belief mutual information:2

Ib(X;Y )
def
= Hb(X)−Hb(X | Y ) (6)

We note this definition is not grounded in the true
distribution in any form. In fact, about the belief

2This definition is found in both the cognitive sciences
(Gallistel and King, 2011; Fan, 2014; Sayood, 2018) as well
as in active learning (Houlsby et al., 2011; Kirsch et al., 2019).



mutual information, Gallistel and King (2011) state:
“the subjectivity that it implies is deeply unsettling
[...] the amount of information actually communi-
cated is not an objective function of the signal from
which the subject obtained it”.

3 A Bayesian Approach to Information

The primary motivation for this paper is developing
a series of tools that help us overcome the limita-
tions of traditional information theory as applied
to machine learning. Specifically, probing repre-
sentations requires a data-dependent information
theory. We thus formulate analogues of surprisal,
entropy and MI in terms of Bayesian agents—using
a framework heavily inspired by Bayesian experi-
mental design (Lindley, 1956). We then prove this
framework does not suffer the same infelicities as
standard information theory in this context.

3.1 An Agent-Based Information Theory
Our discussions will focus on Bayesian agents, so
we start by formally defining them.

Definition 1. A Bayesian agent is a parameterised
probability distribution pθ(x | θ) (or set of distri-
butions) and a prior pθ(θ).3 Given data dN =
{x(1), . . . , x(N)}, the Bayesian posterior over θ is

pθ(θ | dN ) ∝
N∏

n=1

pθ(x(n) | θ) pθ(θ) (7)

Analogously, the Bayesian belief is defined as the
following posterior predictive distribution

pθ(x | dN ) =

∫
pθ(x | θ) pθ(θ | dN ) dθ (8)

Upon encountering an instance x, and after see-
ing a collection of data dN , this agent’s posterior-
predictive Bayesian surprisal will be:

Hθ(X = x | DN = dN ) = − log pθ(x | dN )
(9)

where DN is a data-valued random variable; for
notational succinctness, we omit this random vari-
able for the rest of the paper. We further define the
posterior-predictive Bayesian entropy:

Hθ(X | dN ) = −
∑
x∈X

p(x) log pθ(x | dN ) (10)

3In the case that the Bayesian agent has more than one
distribution, we still only have a single prior without loss of
generality. Indeed, separate priors for each distribution is a
special case where the parameters are partitioned. In the case
of θ = [φ;ψ], we could define pθ(θ) = pθ(φ) · pθ(ψ).

As can be readily seen, the Bayesian entropy is the
expected value of the Bayesian surprisal—with this
expectation taken over the true distribution.4 In
this sense, the Bayesian entropy is a cross-entropy
rather than a standard entropy.

3.2 Bayesian Mutual Information

Defining Bayesian mutual information within our
framework requires a bit more care. First, in con-
trast to surprisal and entropy, mutual information
is a functional of two random variables. We will
name the second random variable Y . To talk about
mutual information, we will consider a Bayesian
agent with a collection of at least two beliefs, e.g.
{pθ(x), pθ(x | y)}. The second belief is condi-
tional, but otherwise follows Definition 1.

Definition 2. Given a collection of data dN =
{(x(1), y(1)), . . . , (x(N), y(N))}, and a Bayesian
agent with a pair of beliefs pθ(x | θ) and pθ(x |
y,θ) and a prior pθ(θ), the Bayesian mutual in-
formation (Bayesian MI) is defined as

Iθ(Y →X | dN )
def
= (11)

Hθ(X | dN )−Hθ(X | Y,dN )

There is an important distinction between the
Bayesian and Shannon MI—Bayesian MI de-
composes as the difference between two cross-
entropies, as opposed to two entropies.5

3.3 An Illustrative Example

For the sake of argument, we assume two indepen-
dent categorical random variables X and Y , both
with c classes and uniformly distributed.

p(x) =
1

c
, p(x | y) =

1

c
(12)

We further assume a Bayesian agent with two
categorical beliefs {pθ(x) = Cat(θ), pθ(x |
y) = Cat(θ + y)}—where y is assumed to be
encoded as a one hot vector—and a Dirichlet prior

4We put this in contrast to eq. (5)—which takes this expec-
tation over the belief itself—since the instances are in practice
encountered with this true frequency. This distinction has
been explicitly noted before, by e.g. Bartlett (1953).

5Cross mutual information (XMI) has been used in sev-
eral previous work such as (Pimentel et al., 2019, 2020b;
Bugliarello et al., 2020; McAllester and Stratos, 2020; Tor-
roba Hennigen et al., 2020; Fernandes et al., 2021; O’Connor
and Andreas, 2021). In those works, though, it was usually
interpreted as a computational approximation to the truth-MI
(or to V-information (Xu et al., 2020), which is discussed later
in the paper). In this work, we highlight the Bayesian MI’s
(and XMI’s) relevance as a generalisation of Shannon’s MI.



pθ(θ) = Dir(α) with concentration parameters
α = 1. Note that this (biased) agent believes that
y and x are more likely than chance to share a
class. Given no data, or given d0, this agent’s prior
predictive distributions are:

pθ(x) =
1

c
, pθ(x | y) =

{ 1
c+1 , x 6= y

2
c+1 , x = y

(13)

In this example:

(i) Mutual Information. We have I(X;Y ) = 0
because X and Y are independent by con-
struction.

(ii) Belief Mutual Information. The belief-
MI is positive, since the agent’s uncertainty
about X is reduced by knowledge of Y—
the prior predictive pθ(x) is uniform, while
the conditional distribution pθ(x | y) is not,
which reduces the belief-entropy. This means
that Hb(X) > Hb(X | Y ), implying that
Ib(X;Y ) > 0.

(iii) Bayesian Mutual Information. Finally,
the Bayesian MI is negative—since x is
uniformly distributed, the unconditional
Bayesian entropy is tight, i.e. Hθ(X | d0) =
H(X), but the conditional one is not, i.e.
Hθ(X | Y,d0) > H(X | Y ) = H(X). We
thus have Iθ(X;Y ) < 0. This entails that, on
this specific example, an agent’s predictive
power over X is lower when given Y .

This illustrates an important aspect of Bayesian
MI: it is grounded on the true distribution.

3.4 Theoretical Properties

We now prove a few relevant theoretical properties
about our framework. We show that Bayesian
MI is symmetric if and only if the agent’s beliefs
respect Bayes’ rule. Then, we discuss why it
does not respect the data-processing inequality,
and its connection to mutual information and to
V-information (Xu et al., 2020).

3.4.1 When is Bayesian MI Symmetric?
It is a well known result that Shannon’s MI is sym-
metric, i.e.

I(X;Y ) = H(X)−H(X | Y ) (14)

= H(Y )−H(Y | X) = I(Y ;X)

This means that the knowledge one can extract
from random variable Y aboutX is the same as the
knowledge one can extract from X about Y . This
is not true in general for Bayesian MI; as we will
show, information-theoretic symmetry and Bayes’
rule are tightly related. As such, we consider in
this section a Bayesian agent with a set of beliefs
{pθ(x), pθ(x | y), pθ(y), pθ(y | x)}. We call the
agent consistent if it respects Bayes’ rule, i.e.

pθ(x | y) =
pθ(y | x) pθ(x)

pθ(y)
(15)

the following theorem characterises when we have
symmetry.

Theorem 1. An agent’s Bayesian mutual informa-
tion is symmetric, i.e.

Iθ(X → Y | dN ) = Iθ(Y → X | dN ) (16)

for all distributions p(x, y) if and only if the
Bayesian agent is consistent.

Proof. See App. D.

3.4.2 No Data-Processing Inequality
Another classical result from information theory is
the data processing inequality. This theorem states
that processing a random variable can never add
information, only reduce it

I(X;Y ) ≥ I(X; f(Y )) (17)

Although theoretically sound, this theorem is
very unintuitive from a practical perspective—
effectively, processing noisy data can make it more
useful. In fact, representation learning is a sub-
field of machine learning devoted precisely to find-
ing functions which can extract more “informa-
tive” representations from some input. One such
example is BERT (Devlin et al., 2019), a large
pre-trained language model which produces con-
textualised representations from sentential inputs.
These representations provably contain the exact
same information about any task as the original sen-
tence (Pimentel et al., 2020b)—in practice, though,
they are much more useful for downstream models.

The data processing inequality does not hold
for Bayesian information, making it a more intu-
itive information-theoretic measure for probing;
pre-trained representation extraction functions can
increase MI from a Bayesian agent perspective.



Theorem 2. The data processing inequality does
not hold for Bayesian information, i.e.

Iθ(Y → X | dN ) ? Iθ(f(Y )→ X | dN ) (18)

Proof. See App. E.

3.4.3 Relation to Mutual Information
The relationship between Bayesian mutual informa-
tion and Shannon MI is relevant for our discussion.
As mentioned in the introduction, Shannon was
concerned with the limits of communication when
he defined his measure. We now put forward an
intuitive theorem about Bayesian information; it
is upper-bounded by the true MI under a weak as-
sumption about the agent’s beliefs.
Theorem 3. Assuming the agent’s belief pθ(x |
dN ) has a smaller Kullback–Leibler (KL) diver-
gence when compared to the true p(x) than the
marginal of its beliefs over y, i.e.

KL

(
p(x) || pθ(x | dN )

)
≤ (19)

KL

p(x) ||
∑
y∈Y

pθ(x | y,dN ) p(y)


We show

Iθ(Y → X | dN ) ≤ I(X;Y ) (20)

Proof. See App. F.

In other words, the information any agent can ex-
tract from a random variable Y about another vari-
able X is upper-bounded by the true MI. We now
define a well-formed belief, which we will use to
analyse the Bayesian MI’s convergence:
Definition 3. We say the belief of a Bayesian agent
is well-formed if and only if the true distribution is
a possible belief, i.e.

∃θ : pθ(θ) > 0 and p(x) = pθ(x | θ) (21)

Given this definition, we prove the Bayesian mutual
information converges to the true MI under well-
defined conditions.
Theorem 4. If we assume a Bayesian agent’s set
of beliefs and prior are well-formed and meet the
conditions of Bernstein–von Mises Theorem (pg.
339, Bickel and Doksum, 2001).6 Then,

lim
N→∞

Iθ(Y → X | dN ) = I(X;Y ) (22)

Proof. See App. G.
6In the case where θ is discrete and finite, the only require-

ment is pθ(θ) > 0, for all values of θ (Freedman, 1963).

3.4.4 Relation to Variational Information
Variational (V-) information (Xu et al., 2020) is
a recent generalisation of mutual information. It
extends MI to the case where a fixed family of
distributions is considered; in which the true distri-
bution may or not be.

Definition 4. Suppose random variable X is dis-
tributed according to p(x). Let V be a variational
family of distributions. Then, V-entropy is defined

HV(X)
def
= inf

q∈V
−
∑
x∈X

p(x) log q(x) (23)

and V-information is defined as

IV(Y → X)
def
= HV(X)−HV(X | Y ) (24)

Unlike our Bayesian mutual information, V-
information is not a data-dependent measure,
i.e. HV(X | DN ) = HV(X). Thus, it does not
meet our desiderata. However, we can prove a
straightforward relationship between the Bayesian
and V informations, which we state below.

Theorem 5. Assume a Bayesian agent’s beliefs
and prior meet the conditions of Kleijn and van der
Vaart (2012), who extend the Bernstein–von Mises
Theorem to beliefs which are not well-formed. Fur-
ther, let V = {pθ(· | θ) | pθ(θ) > 0}. Then,

lim
N→∞

Iθ(Y → X | dN ) = IV(Y → X) (25)

Proof. See App. H.

4 A Framework for Incremental Probing

The proposed Bayesian framework for information
allows us to take into account the amount of
data we have for probing. Crucially, previous
work (Pimentel et al., 2020b) failed to adequately
account for the observation of data. In doing
so, they only analysed the limiting behaviour of
information, under which the probing enterprise
is not fully sensible—given unlimited data and
computation, there is no point in using pre-trained
functions. Indeed, the higher-level motivation
of this work is to find an information-theoretic
framework which serves machine learning, and
under which the goal of probing is inherently
clear. To that end, we propose a relatively simple
experimental design. We compute Bayesian
mutual information, which is a function of the
amount of data, to create several learning curves.



Notation. We define a sentence-level random
variable S, with instances s taken from V ∗, the
Kleene closure of a potentially infinite vocabulary
V . We further define a representation-valued ran-
dom variable R and a task-valued random variable
T , each with instances r ∈ Rd and t ∈ T , where
T is the set of possible values for the analysed task
(e.g. the set of parts of speech in a language).

4.1 Probes as Bayesian Agents
The overall trend in NLP is to train supervised
probabilistic models on task-specific data. We
believe probabilistic probes should analogously be
modelled this way—leading to results compatible
with our empirical intuitions. We thus define a
probe agent as a Bayesian agent with the pair
of beliefs {pθ(t | θ), pθ(t | r,θ)} and a prior
pθ(θ). Any prior pθ(θ) could be chosen for our
probing agents. Nonetheless we have no a priori
knowledge of how the representations should
impact our prediction task. As such, our priors
are such that the initial distributions pθ(t | d0) and
pθ(t | r,d0) are identical. A logical conclusion,
is that the prior Bayesian MI should be zero:

Iθ(R→ T | d0) = 0 (26)

On the opposite extreme—i.e. given unlimited
data—a well-formed belief will likely converge to
the true distribution, yielding the same results as by
Pimentel et al. (2020b). Complementarily, an ill-
formed belief will converge to the V-information:

lim
N→∞

Iθ(R→ T | dN ) = IV(R→ T ) (27)

≈ I(S;T )

The novelty of our framework lies in the explicit
analysis of information under finite data. Bayesian
agents are used here to measure a notion of infor-
mation directly related to ease of extraction—i.e.
how much information could be extracted from the
representations by a naïve agent with no a priori
knowledge about the task itself. In other words,
we ask the question: given a specific dataset dN ,
how much information do the representations yield
about this task? This value is only a subset of the
true MI, being upper-bounded by it.

Why Bayesian MI and not Bayesian entropy?
We focus our analysis on the amount of informa-
tion a Bayesian agent can extract from the repre-
sentations about the task. However, we could as
easily analyse the Bayesian entropy instead. We

believe, though, that the Bayesian MI is an inher-
ently more intuitive value than the entropy. This
is because mutual information puts the Bayesian
entropy in perspective to a trivial baseline—how
much uncertainty would there be without the repre-
sentations. Furthermore, it has a much more inter-
pretable value: with no data its value is zero, while
at the limit it converges to the true mutual informa-
tion. In this paper, we are concerned with its trajec-
tory, i.e., how fast does the Bayesian MI go up?

4.2 Ease of Extraction and Previous Work

Generally speaking, the goal of probing is to test if
a set of contextual representations encodes a certain
linguistic property (Adi et al., 2017; Belinkov et al.,
2017; Tenney et al., 2019; Liu et al., 2021, inter
alia). Most work in this field claims that, when
performing this analysis, we should prefer simple
models as probes (Alain and Bengio, 2016; Hewitt
and Liang, 2019; Voita and Titov, 2020). This is in-
line with Pimentel et al.’s results: using a complex
probe (complex enough to ensure it is well-formed)
with infinite data, we would estimate I(S;T )—a
value which does not meaningfully inform us about
the representations themselves. Defining model
complexity, though, is not trivial (for a longer dis-
cussion see Pimentel et al., 2020a). For this reason,
many works limit themselves to studying only lin-
early encoded information (e.g. Alain and Bengio,
2016; Hewitt and Manning, 2019; Hall Maudslay
et al., 2020) or a subset of neurons at a time (e.g.
Torroba Hennigen et al., 2020; Mu and Andreas,
2020; Durrani et al., 2020). However, restricting
our analysis this way seems arbitrary.

A few recent papers have tried to deal with probe
complexity in a more nuanced way. Hewitt and
Liang (2019) argue for the use of selectivity to con-
trol for probe complexity. Voita and Titov (2020)
and Whitney et al. (2020) use, respectively, min-
imum description length (MDL) and surplus de-
scription length (SDL) to measure the size (in bits)
of the probe model. Pimentel et al. (2020a) ar-
gues probe complexity and accuracy should be seen
as a Pareto trade-off, and propose new metrics to
measure probe complexity. All of these papers de-
fine ease of extraction in terms of properties of the
probe, e.g., its complexity and size.

We argue here for an opposing view of ease of
extraction: Instead of focusing on the complex-
ity of the probes, we should define it according
to the complexity of the task. We further oper-
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Figure 2: Bayesian MI (bits; y-axis) vs number of data examples (x-axis) in part of speech tagging on (left) English
(center-left) Basque, (center-right) Marathi, and (right) Turkish. ALBERT, RoBERTa, BERT, fastText, Random

ationalise this complexity in a very specific way:
how much information a Bayesian agent can extract
from the representations, given limited knowledge
about the task itself—where this limited knowl-
edge is enforced by the size of the observed dataset
dN .7 With this in mind, we evaluate the Bayesian
MI learning curves. In this regard, our analysis
is similar to the learning curves used by Talmor
et al. (2020) and the complexity–accuracy trade-
offs from Pimentel et al. (2020a).

5 Experiments and Results8

5.1 Data and Representations
We focus on part-of-speech (POS) tagging and
dependency-arc labelling in our experiments.
With this in mind, we make use of the universal
dependencies (UD 2.6; Zeman et al., 2020);
analysing the treebanks of four typologically
diverse languages, namely: Basque, English,
Marathi, and Turkish. As our object of analysis,
we look at the contextual representations from
ALBERT (Lan et al., 2020), RoBERTa (Liu et al.,
2019) and BERT (Devlin et al., 2019),9 using as a
baseline the non-contextual fastText (Bojanowski
et al., 2017) and random embeddings. Random
embeddings are initialised at the type level and
kept fixed during experiments.

5.2 Probe
Our experiments focus on Bayesian agents with
multi-layer perceptron (MLP) beliefs:

pθ(t | r,θ) = softmax(MLP(r;φ)) (28)

pθ(t | θ) = Cat(ψ) =
ψt∑|T |

t′=1 ψt′
(29)

7As we show later in the paper, this background knowledge
about the task can also be formally defined as a Bayesian
mutual information, i.e. the information the observed data
provides about the model parameters Iθ(DN → Θ).

8Our code is available in https://www.github.com/
rycolab/bayesian-mi.

9We use the pre-trained models made available by the
transformers library (Wolf et al., 2019).

where φ are the MLP parameters, ψ ∈ N|T | is
a count vector and θ = [φ;ψ] are the agent’s
parameters. This agent has a Gaussian prior over
parameters φ (with zero mean and standard devi-
ation σ = 10), and a Dirichlet distribution prior
over ψ (with concentration parameter α = 1).

As previously discussed, the Gaussian and
Dirichlet priors on the parameters will cause these
models to initially place a uniform distribution on
the output classes—as such, they will have an ini-
tial Bayesian MI of zero. We then expose the probe
agent to increasingly larger sets of data from the
task. Unfortunately, the posterior of eq. (28) has
no closed form solution, so we approximate it with
the maximum-a-posteriori probability pθ(t | r,θ∗),
where θ∗ = arg maxθ∈Θ pθ(θ | dn). We ob-
tain this MAP estimate using the gradient descent
method AdamW (Loshchilov and Hutter, 2019)
with a cross-entropy loss and L2 norm regularisa-
tion.10 The posterior predictive belief of eq. (29)
has a closed-form solution11

pθ(t | dN ) =
count(dN , t) + 1

N + |T | (30)

where count(dN , t) is the number of observed in-
stances of class t.

For both analysed tasks, we run 50 experiments
with log-linearly increasing data sizes, from 1 in-
stance to the whole language’s treebank. For each
of these individual experiments, we sample an MLP
probe configuration. This probe will have 0, 1, or
2 layers—where 0 layers means a linear probe—
dropout between 0 and 0.5, and hidden size from 32
to 1024 (log distributed). We then use the same ar-
chitecture to train a probe for each of our analysed
representations, plotting their Pareto curves.

10L2 weight decay regularisation is equivalent to a Gaussian
prior on the parameter space (pg. 350, Bishop, 1995).

11This posterior predictive distribution is equivalent to
Laplace smoothing (Jeffreys, 1939; Robert et al., 2009).

https://www.github.com/rycolab/bayesian-mi
https://www.github.com/rycolab/bayesian-mi


101 103 105

0

2

4

101 103

0

1

2

3

100 101 102 103

0

1

2

101 103

0

1

2

3

Figure 3: Bayesian MI (bits; y-axis) vs number of examples (x-axis) in dependency arc labelling on (left) English
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5.3 Discussion

Fig. 2 presents pareto curves for part-of-speech
tagging. These curves convey a few interesting re-
sults. The first is the intuitive fact that information
is much harder to extract with random embeddings,
although with enough training data their results
slowly converge to near the fastText ones—this can
be seen most clearly in English. This matches our
theoretical framework: the true mutual information
between the target task and either fastText or
random embeddings is the same, thus, if our beliefs
are well-formed, the Bayesian MI should converge
to this value, although with different speeds. The
second result is that ALBERT makes information
more easily extractable than either BERT or
RoBERTa in English, and that multilingual BERT
is roughly equally as informative as fastText under
the finite data scenarios of the other analysed
languages. Finally, the last result goes against one
of the claims of Pimentel et al. (2020a), who in
light of their flat Pareto curves for POS tagging
claimed that we needed harder tasks for probing.
One only needs harder tasks if their measure of
complexity is not nuanced enough—as we see,
even POS tagging is hard under the low-resource
scenarios presented in our learning curves.

Fig. 3 presents results for dependency arc la-
belling. These learning curves also present interest-
ing trends. While the POS tagging curves seem to
be on the verge of convergence for English, Basque
and Turkish, this is not the case for dependency arc
labelling. This implies that, as expected, depen-
dency arc labelling is either an inherently harder
task, or that the representations encode the nec-
essary information in a harder to extract manner.
These results, also highlight the importance of an
information-theoretic measure being able to cap-
ture negative information—as evinced in Fig. 4.
For the low-data scenario, the BERToid models
hurt performance, as opposed to helping. This is
because high-dimensional representations, together
with a weak prior, allow the agent to easily overfit
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Figure 4: Dependency arc labelling polyfit on English.

to the little presented evidence. On the other hand,
fastText does not present the same problem, having
a positive Bayesian MI even in a low-data setting.

6 An Intuitive Decomposition

We now present some basic results about our
framework which, although not strictly necessary
for the present study, help motivate it. They
also serve as a justification for our choice of
cross-entropy when formalising Bayesian entropy.
With this in mind, we analyse information from
the perspective of a fully Bayesian agent with a
well-formed belief.12 A classic decomposition of
the cross-entropy is the following:

Hθ(T ) = H(T ) + KL(p || pθ) (31)

We posit a new interpretation for this equality.
Theorem 6. Let Θ be a parameter-valued random
variable. The entropy of a consistent Bayesian
agent with well-formed beliefs decomposes as

Hθ(T | dN ) = H(T )︸ ︷︷ ︸
entropy

+ Iθ(T → Θ | dN )︸ ︷︷ ︸
information about distribution

Proof. See App. I.

In other words, the cross-entropy is composed of
the sum between the entropy itself—i.e. the “true”
information the data source provides, or its inherent
uncertainty—and how much information the data
provides about its distribution itself.

12We make the same analysis from the perspective of an
agent with an ill-formed belief in App. A



Relation to SDL. The minimum description
length (MDL; Voita and Titov, 2020) is a probing
metric defined as Hθ(DN ). In its online coding in-
terpretation, it is rewritten as (Rissanen, 1978; Blier
and Ollivier, 2018): Hθ(DN ) =

∑N
n=1 Hθ(X |

Dn−1)—where the cross-entropy of each element
X in DN is computed incrementally because the
parameter θ (which would make them independent)
is unknown. The surplus description length (SDL;
Whitney et al., 2020) is defined as the difference
between a dataset’s cross-entropy and its entropy:
Hθ(DN )−H(DN ). Using Theorem 6, we derive
a new interpretation for SDL:

Iθ(DN → Θ) = Hθ(DN )−H(DN ) (32)

where we use prior predictive distributions, as op-
posed to posterior predictive ones. From this equa-
tion, we find that SDL is the information a dataset
gives a Bayesian agent about its model parameters.

While closely related to one another, the
Bayesian MI, MDL and SDL converge to different
values in the limit of infinite dataset sizes:

lim
N→∞

Hθ(DN )︸ ︷︷ ︸
MDL

→∞ (33)

lim
N→∞

Iθ(DN → Θ)︸ ︷︷ ︸
SDL

→∞ (34)

lim
N→∞

Iθ(Y → X | dN )︸ ︷︷ ︸
Bayesian MI

→ I(X;Y ) (35)

It is easy to see that MDL goes to infinity as
the dataset size grows—Hθ(DN ) grows at least
linearly with the data size. The reasons behind
SDL also exploding as the data increases are less
straightforward, though, but become clear from its
Bayesian MI interpretation. If the parameter space
is continuous, and if the Bayesian belief converges
at the limit of infinite data (as per Theorem 4), the
Bayesian mutual information in eq. (32) will natu-
rally go to infinity.13 We thus argue that Bayesian
mutual information is a better measure for probing

13This is a byproduct of the properties of differential en-
tropies (the entropy of continuous random variables). As the
distribution pθ(θ | dN ) converges to a Dirac delta distribu-
tion centred on the optimal parameters, which has an entropy
of negative infinity, this Bayesian MI goes to positive infinite.

lim
N→∞

Iθ(DN → Θ) = lim
N→∞

(Hθ(Θ)−Hθ(Θ | dN ))

= Hθ(Θ)− (−∞)

=∞ (36)

than either MDL or SDL; although all are sensitive
to the observed dataset size, Bayesian MI is the
only that does not diverge as this size grows.

7 Conclusion

In this paper we proposed an information-theoretic
framework to analyse mutual information from
the perspective of a Bayesian agent; we term this
Bayesian mutual information. This framework has
intuitive properties (at least from a machine learn-
ing perspective), which traditional information the-
ory does not, for example: data can be informa-
tive, processing can help, and information can hurt.
In the experimental portion of our paper, we use
Bayesian mutual information to probe representa-
tions for both part-of-speech tagging and depen-
dency arc labelling. We show that ALBERT is the
most informative of the analysed representations in
English; and high dimensional representations can
provide negative information on low data scenarios.
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Kristina Brokaitė, Aljoscha Burchardt, Marie Can-
dito, Bernard Caron, Gauthier Caron, Tatiana Cav-
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A Ill-formed Beliefs Loose Information

For the sake of argument, we now assume an agent with an ill-defined belief pθ(t | θ) and a prior pθ(θ).
We will show that such Bayesian agents loose information, meaning that they will not obtain as much
information about their optimal parameters as if they had a well-formed belief.

Theorem 7. Assume θ∗ are the optimal parameters for a Bayesian agent with ill-formed, but consistent
beliefs. The information this agent will receive about its optimal parameters is

Iθ(T → Θ = θ∗ | dN ) < Hθ(T | dN )−H(T ) (37)

Proof. This proof follows from the Bayesian MI definition, from this Bayesian agent having consistent
beliefs, and from the fact that the cross-entropy is an upper-bound to the entropy, with equality only when
both probability distributions are the same—which by definition is not possible pθ(t | θ∗) 6= p(t)

Iθ(T → Θ = θ∗ | dN ) = Iθ(Θ = θ∗ → T | dN ) (symmetry due to belief consistency) (38a)

= Hθ(T | dN )−Hθ(T | Θ = θ∗,dN ) (38b)

= Hθ(T | dN )−Hθ(T | Θ = θ∗) (38c)

< Hθ(T | dN )−H(T ) (strict inequality due to ill-formed beliefs) (38d)

B Measures of Information

Several other measures of information have been proposed, among them are the H entropy (DeGroot,
1962), the Rényi entropy (Rényi, 1961; Lenzi et al., 2000), Bayes vulnerability (Alvim et al., 2019), and
the Determinantal Mutual Information (DMI; Kong, 2020). None of these take an agent’s belief into
consideration, and so our analysis is orthogonal to them. The work most similar to ours, in this respect, is
Clarkson et al.’s (2005) investigation of how belief impacts information leakage—and its extension, by
Hamadou et al. (2010), to the Rényi min-entropy. Importantly, the results obtained by Clarkson et al. can
be similarly derived using our framework.

C A Note on Empirical Limitations

Estimating the true MI between two random variables is known to be a hard problem for which several
methods have been proposed (for a detailed review, see McAllester and Stratos, 2020)—estimating the
Bayesian MI may be equally challenging. Given knowledge of pθ(·) and having access to samples from
p(·), the Bayesian MI can be trivially estimated using the Bayesian surprisal’s sample mean. On the
other hand, in a setting such as active learning, where one (by definition) does not have access to the true
distribution p(y | x)—only to the belief—the best approximation to the Bayesian MI may indeed be the
belief-MI (used by Houlsby et al. 2011) or the Bayesian surprise (used by Storck et al. 1995 and Itti and
Baldi 2006, 2009). Finally, approximating the Bayesian MI in the cognitive sciences may be an even
harder problem than estimating the true MI, since it would require approximating both the belief pθ(·) of
a specific agent and the true distribution p(·) of an event.

D Proof of Symmetric Bayesian Mutual Information, Theorem 1

Theorem 1. An agent’s Bayesian mutual information is symmetric, i.e.

Iθ(X → Y | dN ) = Iθ(Y → X | dN ) (39)

for all distributions p(x, y) if and only if the Bayesian agent is consistent.

Proof. We will first prove that if the Bayesian MI is symmetric for all true distributions p(x, y), then
the Bayesian agent is consistent (the if case). We then prove the inverse proposition (the only if case),
completing this if and only if theorem’s proof.



⇒ We show this, by relying on specific distributions where p(x, y) is deterministic, putting all probability
mass in a single point, i.e. p(x0, y0) = 1.

Iθ(X → Y ) = Iθ(Y → X) (40a)∑
x∈X

∑
y∈Y

p(x, y) log
pθ(y | x)

pθ(y)
=
∑
x∈X

∑
y∈Y

p(x, y) log
pθ(x | y)

pθ(x)
(40b)

p(x0, y0) log
pθ(y0 | x0)

pθ(y0)
= p(x0, y0) log

pθ(x0 | y0)

pθ(x0)
(40c)

pθ(y0 | x0)

pθ(y0)
=
pθ(x0 | y0)

pθ(x0)
(40d)

As we can show this same result for any value of x ∈ X and y ∈ Y , we conclude the agents must have
consistent beliefs, i.e.

∀x ∈ X , y ∈ Y :
p(y | x)

p(y)
=
p(x | y)

p(x)
(41)

⇐ Bayes’ rule can be written as
p(y | x)

p(y)
=
p(x | y)

p(x)
(42)

We now show that all consistent agents will have symmetric MI

Iθ(X → Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
pθ(y | x)

pθ(y)
(43a)

(1)
=
∑
x∈X

∑
y∈Y

p(x, y) log
pθ(x | y)

pθ(x)
(43b)

= Iθ(Y → X) (43c)

where equality (1) relies on Bayes’ rule.

E Proof of No Data Processing Inequality, Theorem 2

Theorem 2. The data processing inequality does not hold for Bayesian information, i.e.

Iθ(Y → X | dN ) ? Iθ(f(Y )→ X | dN ) (44)

Proof. We prove this theorem with a counter example. Let Y be a Poisson distributed random variable
with unknown mean, i.e. p(y) = Pois(θ̂), where θ̂ is this distributions true mean. We further define a
second random variable Z, as:

f(y) = y − θ̂, p(z | y) = 1{z = f(y)} (45)

Z is, thus, a deterministic function of Y , where the function f(y) mean-centres random variable Y .
Finally, we also define X as a Bernoulli distributed random variable:

g(z) =
1

1 + e−z
, p(x | z) =

{
g(z) x = 1

1− g(z) x = 0
(46)

where g(z) is a sigmoid function. We can further define the distribution

p(x | y) =

{
(g ◦ f) (y) x = 1

1− (g ◦ f) (y) x = 0
(47)



From these distributions, we see that H(Z | Y ) = 0, as f(y) is a deterministic function. Further, in
this specific example H(X | Z) = H(X | Y )—this can be proved from the fact that f(y) is a bijective
function, and that the data processing inequality is tight for bijections

H(X | Y ) ≤ H(X | f(Y )) = H(X | Z) ≤ H(X | f−1(Z)) = H(X | Y ) (48)

We now define a Bayesian agent, which correctly knows the relationship between Y , Z and X , i.e. with
well-formed beliefs pθ(x | y, θ) and pθ(x | z, θ), and with a prior pθ(θ)—this agent does not know the
true value of parameter θ though. For this Bayesian agent

Hθ(X | Y,dN ) =
∑
x∈X

∑
y∈Y

p(x, y) log

∫
pθ(x | y, θ)pθ(θ | dN )dθ (49)

When given Z = f(Y ), however, this agent does not need to know θ, since the data is already mean-
centred (there are no unknown parameters in pθ(x | z)). This Bayesian agent’s conditional entropy given
Z is

Hθ(X | Z,dN ) =
∑
x∈X

∑
z∈Z

p(x, z) log pθ(x | z,dN ) (50a)

=
∑
x∈X

∑
z∈Z

p(x, z) log p(x | z,dN ) (50b)

=
∑
x∈X

∑
z∈Z

p(x, z) log p(x | z) (50c)

= H(X | Z) (50d)

This concludes the example that a deterministic (mean-centring) function can help this Bayesian agent.

Iθ(Y → X | dN ) = Hθ(X | dN )−Hθ(X | Y,dN ) (51a)
(1)

≤ Hθ(X | dN )−H(X | Y ) (51b)

= Hθ(X | dN )−H(X | Z) (51c)

= Hθ(X | dN )−Hθ(X | Z,dN ) (51d)

= Iθ(Z → X | dN ) (51e)

= Iθ(f(Y )→ X | dN ) (51f)

where (1) becomes a strict inequality if the belief pθ(θ) 6= δ(θ − θ̂), i.e. if the prior does not place all
probability mass in the true parameters θ̂.

F Proof of Bayesian MI is Upper-bounded by the True MI, Theorem 3

Theorem 3. Assuming the agent’s belief pθ(x | dN ) is tighter than the marginal of its beliefs over y, i.e.
than

∑
y∈Y pθ(x | y,dN )p(y). We show

Iθ(Y → X | dN ) ≤ I(X;Y ) (52)

Proof. We start by noting that the difference between the true MI, and its Bayesian counterpart is equal
to the difference between two KL-divergences

I(X;Y )− Iθ(Y → X | dN ) = H(X)−H(X | Y )−Hθ(X | dN ) + Hθ(X | Y,dN ) (53a)

= KL(p(x | y) || pθ(x | y,dN ))−KL(p(x) || pθ(x | dN )) (53b)

To prove this theorem, we need to show that one KL-divergence is smaller than the other, i.e.

KL(p(x) || pθ(x | dN )) ≤ KL(p(x | y) || pθ(x | y,dN )) (54)



We can show this with a bit of algebraic manipulation and an assumption about our Bayesian agent

KL(p(x | y) || pθ(x | y,dN )) =
∑
x∈X

p(x)
∑
y∈Y

p(y | x) log
p(x | y)

pθ(x | y,dN )
(55a)

=
∑
x∈X

p(x)
∑
y∈Y

p(y | x) log
p(x | y)p(y)

pθ(x | y,dN )p(y)
(55b)

(1)

≥
∑
x∈X

p(x)

∑
y∈Y

p(y | x)

 log

∑
y∈Y p(x | y)p(y)∑

y∈Y pθ(x | y,dN )p(y)
(55c)

=
∑
x∈X

p(x) · 1 · log
p(x)∑

y∈Y pθ(x | y,dN )p(y)
(55d)

(2)

≥
∑
x∈X

p(x) log
p(x)

pθ(x | dN )
(55e)

= KL(p(x) || pθ(x | dN )) (55f)

In this equations, (1) relies on the log sum inequality, while (2) assumes the following inequality

Hθ(X) = −
∑
x∈X

p(x) log pθ(x | dN ) (56a)

≤ −
∑
x∈X

p(x) log
∑
y∈Y

pθ(x | y,dN )p(y) (56b)

This is equivalent to our assumption that this agent’s estimate of pθ(x | dN ) is tighter than if the agent
marginalised its beliefs over y. While not necessarily true, in practice, if X is discrete and has a small
cardinality |X |, a simple Laplace smoothed estimate of pθ(x | dN ) is likely to result in this inequality.
One could instead assume an agent which uses a Monte Carlo sampling approximation for estimating
pθ(x | dN ) from pθ(x | y,dN ). This would switch the inequality (2) for an approximation, and result
in an expected lower bound instead

Iθ(Y → X | dN ) . I(X;Y ) (57)

G Proof of the Convergence to Mutual Information, Theorem 4

Theorem 4 If we assume a Bayesian agent’s set of beliefs and prior are well-formed and meet the
conditions of Bernstein–von Mises Theorem (pg. 339, Bickel and Doksum, 2001). Then,

lim
N→∞

Iθ(Y → X | dN ) = I(X;Y ) (58)

Proof. The Bernstein–von Mises Theorem only applies to well-formed beliefs, i.e. beliefs which can
model the true probability distribution—a condition which is satisfied by our assumptions to this theorem.
By this theorem—and under a number of other specified conditions, e.g. absolute continuity of the prior
in a neighbourhood around θ̂ and continuous positive density at θ̂ (see pg. 141 in van der Vaart 2000 for
the full set of conditions)—we have

p(x) = lim
N→∞

pθ(x | dN ) (59)



Now, we apply the continuous mapping theorem to analyse the convergence of the Bayesian entropy

lim
N→∞

Hθ(X | dN ) = − lim
N→∞

∑
x∈X

p(x) log pθ(x | dN ) (60a)

(1)
= −

∑
x∈X

p(x) log

(
lim

N→∞
pθ(x | dN )

)
(60b)

= −
∑
x∈X

p(x) log p(x) (60c)

= H(X) (60d)

where (1) relies on the continuous mapping theorem. A similar convergence applies to Hθ(X | Y,dN ).
Finally, we can complete the proof

lim
N→∞

Iθ(Y → X | dN ) = lim
N→∞

(Hθ(X | dN )−Hθ(X | Y,dN )) (61a)

= H(X)−H(X | Y ) (61b)

= I(X;Y ) (61c)

H Proof of the Convergence to V-information, Theorem 5

Theorem 5 Assume a Bayesian agent’s beliefs and prior meet the conditions of Kleijn and van der
Vaart (2012), who extend the Bernstein–von Mises Theorem to beliefs which are not well-formed. Further,
let V = {pθ(· | θ) | pθ(θ) > 0}. Then,

lim
N→∞

Iθ(Y → X | dN ) = IV(Y → X) (62)

Proof. Kleijn and van der Vaart (2012) extend the Bernstein–von Mises Theorem to ill-formed beliefs,
showing that, under specific conditions for the Bayesian belief and priors, the predictive posterior
distribution converges to

lim
N→∞

pθ(x | dN ) = pθ(x | θ∗) (63)

where θ∗ is a unique set of parameters which minimises the KL-divergence between pθ(x | θ) and the
true distribution p(x), i.e.

pθ(x | θ∗) = arg inf
q∈V

∑
x∈X

p(x) log
1

q(x)
(64)

Given this convergence property, we can finish the proof similarly to the one for the well-formed belief:

lim
N→∞

Hθ(X | dN ) = lim
N→∞

∑
x∈X

p(x) log
1

pθ(x | dN )
(65a)

(1)
=
∑
x∈X

p(x) log

(
lim

N→∞

1

pθ(x | dN )

)
(65b)

=
∑
x∈X

p(x) log
1

pθ(x | θ∗) (65c)

= HV(X) (65d)

where V is defined as {p(x | θ) | pθ(θ) > 0}, and (1) relies on the continuous mapping theorem. We
now conclude this proof:

lim
N→∞

Iθ(Y → X | dN ) = lim
N→∞

(Hθ(X | dN )−Hθ(X | Y,dN )) (66a)

= HV(X)−HV(X | Y ) (66b)

= IV(Y → X) (66c)



I Proof of the Intuitive Decomposition, Theorem 6

Theorem 6 Let Θ be a parameter-valued random variable. The entropy of a consistent Bayesian agent
with well-formed beliefs decomposes as

Hθ(T | dN ) = H(T )︸ ︷︷ ︸
entropy

+ Iθ(T → Θ | dN )︸ ︷︷ ︸
information about distribution

(67)

Proof. Note that under the Bayesian MI only the information about the true model parameters, i.e. θ̂,
matters

Iθ(X → Θ | dN ) =
∑
x∈X

∫
p(x,θ) log

pθ(θ | x,dN )

pθ(θ | dN )
dθ (68a)

(1)
=
∑
x∈X

∫
p(x) δ(θ − θ̂) log

pθ(θ | x,dN )

pθ(θ | dN )
dθ (68b)

=
∑
x∈X

p(x) log
pθ(θ̂ | x,dN )

pθ(θ̂ | dN )
(68c)

= Iθ(X → Θ = θ̂ | dN ) (68d)

where (1) relies on the fact that the true p(θ) places all probability mass on the value θ̂. Using this result,
we can show the Bayesian mutual information in eq. (67) is the same as the KL-divergence.

Iθ(X → Θ | dN ) = Iθ(X → Θ = θ̂ | dN ) (69a)
(2)
= Iθ(Θ = θ̂ → X | dN ) (69b)

= Hθ(X | dN )−Hθ(X | Θ = θ̂,dN ) (69c)

= Hθ(X | dN )−H(X) (69d)

= KL(p(x) || pθ(x | dN )) (69e)

where (2) relies on the assumption that this agent’s beliefs are consistent, and by definition H(X) =
Hθ(X | Θ = θ̂,dN ).


