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Abstract

We present methods for calculating a mea-
sure of phonotactic complexity—bits per
phoneme—that permits a straightforward
cross-linguistic comparison. When given a
word, represented as a sequence of phone-
mic segments such as symbols in the inter-
national phonetic alphabet, and a statistical
model trained on a sample of word types
from the language, we can approximately
measure bits per phoneme using the negative
log-probability of that word under the model.
This simple measure allows us to compare
the entropy across languages, giving insight
into how complex a language’s phonotactics
are. Using a collection of 1016 basic concept
words across 106 languages, we demonstrate
a very strong negative correlation of −0.74
between bits per phoneme and the average
length of words.

1 Introduction

One prevailing view on system-wide phonological
complexity is that as one aspect increases in com-
plexity (e.g., size of phonemic inventory), another
reduces in complexity (e.g., degree of phonotactic
interactions). Underlying this claim—the so-called
compensation hypothesis (Martinet, 1955; Moran
and Blasi, 2014)—is the conjecture that languages
are, generally speaking, of roughly equivalent com-
plexity, i.e., no language is overall inherently more
complex than another. This conjecture is widely
accepted in the literature and dates back, at least,
to the work of Hockett (1958). Since along any
one axis, a language may be more complex than
another, this conjecture has a corollary that com-
pensatory relationships between different types of
complexity must exist. Such compensation has
been hypothesized to be the result of natural pro-
cesses of historical change, and is sometimes at-
tributed to a potential linguistic universal of equal
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Figure 1: Bits-per-phoneme vs average word length
using an LSTM language model.

communicative capacity (Pellegrino et al., 2011;
Coupé et al., 2019).

Methods for making hypotheses about linguis-
tic complexity objectively measurable and testable
have long been of interest, though existing mea-
sures are typically relatively coarse—see, e.g.,
Moran and Blasi (2014) and §2 below for reviews.
Briefly, counting-based measures such as inventory
sizes (e.g., numbers of vowels, consonants, sylla-
bles) typically play a key role in assessing phono-
logical complexity. Yet, in addition to their categor-
ical nature, such measures generally do not capture
longer-distance (e.g., cross-syllabic) phonological
dependencies such as vowel harmony. In this paper,
we take an information-theoretic view of phonotac-
tic complexity, and advocate for a measure that per-
mits straightforward cross-linguistic comparison:
bits per phoneme. For each language, a statistical
language model over words (represented as phone-
mic sequences) is trained on a sample of types from
the language, and then used to calculate the bits per
phoneme for new samples, thus providing an upper
bound of the actual entropy (Brown et al., 1992).

Characterizing phonemes via information
theoretic measures goes back to Cherry et al.
(1953), who discussed the information content of
phonemes in isolation, based on the presence or



absence of distinctive features, as well as in groups,
e.g., trigrams or possibly syllables. Here we lever-
age modern recurrent neural language modeling
methods to build models over full word forms
represented as phoneme strings, thus capturing any
dependencies over longer distances (e.g., harmony)
in assigning probabilities to phonemes in sequence.
By training and evaluating on comparable corpora
in each language, consisting of concept-aligned
words, we can characterize and compare their
phonotactics. While probabilistic characterizations
of phonotactics have been employed extensively
in psycholinguistics (see §2.4), such methods
have generally been used to assess single words
within a lexicon (e.g., classifying high versus low
probability words during stimulus construction),
rather than information-theoretic properties of the
lexicon as a whole, which our work explores.

The empirical portion of our paper exploits this
information-theoretic take on complexity to exam-
ine multiple aspects of phonotactic complexity:

(i) Bits-per-phoneme and Word Length: In
§5.1, we show a very high negative correla-
tion of −0.74 between bits-per-phoneme and
average word length for the same 1016 basic
concepts across 106 languages. This correla-
tion is plotted in Fig. 1. In contrast, conven-
tional phonotactic complexity measures, e.g.,
number of consonants in an inventory, demon-
strate poor correlation with word length. Our
results are consistent with Pellegrino et al.
(2011), who show a similar correlation in
speech.1 We additionally establish, in §5.2,
that the correlation persists when controlling
for characteristics of long words, e.g., early
versus late positions in the word.

(ii) Constraining Language: Despite often be-
ing thought of as adding complexity, pro-
cesses like vowel harmony and final-obstruent
devoicing improve the predictability of subse-
quent segments by constraining the number
of well formed forms. Thus, they reduce com-
plexity measured in bits per phoneme. We
validate our models by systematically remov-
ing certain constraints in our corpora in §5.3.

(iii) Intra- versus Inter-Family Correlation:
Additionally, we present results in §5.4 show-

1See also Coupé et al. (2019), where syllable-based bigram
models are used to establish a comparable information rate in
speech across 17 typologically diverse languages.

ing our complexity measure not only corre-
lates with word length in a diverse set of lan-
guages, but also intra language families. Stan-
dard measures of phonotactic complexity do
not show such correlations.

(iv) Explicit feature representations: We also
find (in §5.5) that methods for including
features explicitly in the representation,
using methods described in §4.1, yield little
benefit except in an extremely low-resource
condition.

Our methods2 permit a straight-forward cross-
linguistic comparison of phonotactic complexity,
which we use to demonstrate an intriguing trade-off
with word length. Before motivating and present-
ing our methods, we next review related work on
measuring complexity and phonotactic modeling.

2 Background: Phonological Complexity

2.1 Linguistic complexity

Linguistic complexity is a nuanced topic. For
example, one can judge a particular sentence to be
syntactically complex relative to other sentences
in the language. However, one can also describe
a language as a whole as being complex in one
aspect or another, e.g., polysynthetic languages
are often deemed morphologically complex. In
this paper, we look to characterize phonotactics
at the language level. However, we use methods
more typically applied to specific sentences
in a language, for example in the service of
psycholinguistic experiments.

In cross-linguistic studies, the term complexity
is generally used chiefly in two manners, which
Moran and Blasi (2014) follow Miestamo (2006)
in calling relative and absolute. Relative complex-
ity metrics are those that capture the difficulty of
learning or processing language, which Miestamo
(2006) points out may vary depending on the in-
dividual (hence, is relative to the individual being
considered). For example, vowel harmony, which
we will touch upon later in the paper, may make
vowels more predictable for a native speaker, hence
less difficult to process; for a second language
learner, however, vowel harmony may increase dif-
ficulty of learning and speaking. Absolute com-
plexity measures, in contrast, assess the number of

2Code to train these models and reproduce results
is available at https://github.com/tpimentelms/
phonotactic-complexity.

https://github.com/tpimentelms/phonotactic-complexity
https://github.com/tpimentelms/phonotactic-complexity


parts of a linguistic (sub-)system, e.g., number of
phonemes or licit syllables.

In the sentence processing literature, surprisal
(Hale, 2001; Levy, 2008) is a widely used measure
of processing difficulty, defined as the negative log
probability of a word given the preceding words.
Words that are highly predictable from the preced-
ing context have low surprisal, and those that are
not predictable have high surprisal. The phonotac-
tic measure we advocate for in §3 is related to sur-
prisal, though at the phoneme level rather than the
word level, and over words rather than sentences.
Measures related to phonotactic probability have
been used in a range of psycholinguistic studies—
see §2.4—though generally to characterize single
words within a language (e.g., high versus low prob-
ability words) rather than for cross-linguistic com-
parison as we are here. Returning to the distinction
made by Miestamo (2006), we will remain agnostic
in this paper as to which class (relative or absolute)
such probabilistic complexity measures fall within,
as well as whether the trade-offs that we document
are bonafide instances of complexity compensation
or are due to something else, e.g., related to the
communicative capacity as hypothesized by Pelle-
grino et al. (2011). We bring up this terminological
distinction primarily to situate our use of complex-
ity within the diverse usage in the literature.

Additionally, however, we will point out that an
important motivation for those advocating for the
use of absolute over relative measures to character-
ize linguistic complexity in cross-linguistic studies
is a practical one. Miestamo (2006; 2008) claims
that relative complexity measures are infeasible for
broadly cross-linguistic studies because they rely
on psycholinguistic data, which is neither common
enough nor sufficiently easily comparable across
languages to support reliable comparison. In this
study, we demonstrate that surprisal and related
measures are not subject to the practical obstacles
raised by Miestamo, independently of whichever
class of complexity they fall into.

2.2 Measures of Phonological Complexity

The complexity of phonemes has long been studied
in linguistics, including early work on the topic
by Zipf (1935), who argued that a phoneme’s ar-
ticulatory effort was related to its frequency. Tru-
betzkoy (1938) introduced the notion of marked-
ness of phonological features, which bears some
indirect relation to both frequency and articulatory

complexity. Phonological complexity can be for-
mulated in terms of language production (e.g., com-
plexity of planning or articulation) or in terms of
language processing (e.g., acoustic confusability or
predictability), a distinction often framed around
the ideas of articulatory complexity and perceptual
salience—see, e.g., Maddieson (2009). One recent
instantiation of this was the inclusion of both fo-
calization and dispersion to model vowel system
typology (Cotterell and Eisner, 2017).

It is also natural to ask questions about the
phonological complexity of an entire language in
addition to that of individual phonemes—whether
articulatory or perceptual, phonemic or phonotactic.
Measures of such complexity that allow for cross-
linguistic comparison are non-trivial to define. We
review several previously proposed metrics here.

Size of phoneme inventory. The most basic met-
ric proposed for measuring phonological complex-
ity is the number of distinct phonemes in the lan-
guage’s phonemic inventory (Nettle, 1995). There
has been considerable historical interest in count-
ing both the number of vowels and the number
of consonants—see, e.g., Hockett (1955); Green-
berg et al. (1978); Maddieson and Disner (1984).
Phoneme inventory size has its limitations—it ig-
nores the phonotactics of the language. It does,
however, have the advantage that it is relatively
easy to compute without further linguistic analy-
sis. Correlations between the size of vowel and
consonant inventories (measured in number of
phonemes) have been extensively studied, with con-
tradictory results presented in the literature—see,
e.g., Moran and Blasi (2014) for a review. Increases
in phonemic inventory size are also hypothesized
to negatively correlate with word length measured
in phonemes (Moran and Blasi, 2014). In Nettle
(1995), an inverse relationship was demonstrated
between the size of the segmental inventory and
the mean word length for 10 languages, and similar
results (with some qualifications) were found for a
much larger collection of languages in Moran and
Blasi (2014).3 We will explore phoneme inventory
size as a baseline in our studies in §5.

Markedness in Phoneme Inventory. A refine-
ment of phoneme inventory size takes into ac-
count markedness of the individual phonemes.

3Note that by examining negative correlations between
word length and inventory size within the context of complex-
ity compensation, word length is also being taken implicitly
as a complexity measure, as we shortly make explicit.



McWhorter (2001) argues that one should judge the
complexity of an inventory by counting the cross-
linguistic frequency of the phonemes in the inven-
tory, channeling the spirit of Greenberg (1966).
Thus, a language that has fewer phonemes, but
contains cross-linguistically marked ones such as
clicks, could be more complex.4 McWhorter jus-
tifies this definition with the observation that no
attested language has a phonemic inventory that
consists only of marked segments. Beyond fre-
quency, Lindblom and Maddieson (1988) propose
a tripartite markedness rating scheme for various
consonants. In this paper, we are principally look-
ing at phonotactic complexity, though we did exam-
ine the joint training of models across languages,
which can be seen as modeling some degree of
typicality and markedness.

Word length. As stated earlier, word length,
measured in the number of phonemes in a word,
has been shown to negatively correlate with other
complexity measures, such as phoneme inventory
size (Nettle, 1995; Moran and Blasi, 2014). To the
extent that this is interpreted as being a compen-
satory relation, this would indicate that word length
is being taken as an implicit measure of complexity.
Alternatively, word length has a natural interpre-
tation in terms of information rate, so trade-offs
could be attributed to communicative capacity (Pel-
legrino et al., 2011; Coupé et al., 2019).

Number of Licit Syllables. Phonological con-
straints extend beyond individual units to the struc-
ture of entire words themselves, as we discussed
above; so why stop at counting phonemes? One
step in that direction is to investigate the syllabic
structure of language, and count the number of pos-
sible licit syllables in the language (Maddieson and
Disner, 1984; Shosted, 2006). Syllabic complex-
ity brings us closer to a more holistic measure of
phonological complexity. Take, for instance, the
case of Mandarin Chinese. At first blush, one may
assume that Mandarin has a complex phonology
due to an above-average-sized phonemic inventory
(including tones); closer inspection, however, re-
veals a more constrained system. Mandarin only
admits two codas: /n/ and /N/.

4McWhorter (2001) was one of the first to offer a quan-
titative treatment of linguistic complexity at all levels. Note,
however, he rejects the equal complexity hypothesis, arguing
creoles are simpler than other languages. As our data contains
no creole, we cannot address this hypothesis; rather we only
compare non-creole languages.

While syllable inventories and syllable-based
measures of phonotactic complexity—e.g., high-
est complexity syllable type in Maddieson (2006)—
do incorporate more of the constraints at play in a
language versus segment-based measures, (a) they
remain relatively simple counting measures; and
(b) phonological constraints do not end at the sylla-
ble boundary. Phenomena such as vowel harmony
operate at the word level. Further, the combinato-
rial possibilities captured by a syllabic inventory,
as discussed by Maddieson (2009), can be seen as
a sort of categorical version of a distribution over
forms. Stochastic models of word-level phonotac-
tics permit us to go beyond simple enumeration
of a set, and characterize the distribution in more
robust information-theoretic terms.

2.3 Phonotactics
Beyond characterizing the complexity of phonemes
in isolation or the number of syllables, one can
also look at the system determining how phonemes
combine to form longer sequences in order to
create words. The study of which sequences of
phonemes constitute natural-sounding words is
called phonotactics. For example, as Chomsky and
Halle (1965) point out in their oft-cited example,
brick is an actual word in English;5 blick is not
an actual word in English, but is judged to be a
possible word by English speakers; and bnick is
neither an actual nor a possible word in English,
due to constraints on its phonotactics.

Psycholinguistic studies often use phonotactic
probability to characterize stimuli within a
language—see §2.4 for details. For example,
Goldrick and Larson (2008) demonstrate that
both articulatory complexity and phonotactic
probability influence the speed and accuracy
of speech production. Measures of the overall
complexity of a phonological system must thus
also account for phonotactics.

Cherry et al. (1953) took an explicitly
information-theoretic view of phonemic struc-
ture, including discussions of both encoding
phonemes as feature bundles and the redundancy
within groups of phonemes in sequence. This
perspective of phonemic coding has led to work
on characterizing the explicit rules or constraints
that lead to redundancy in phoneme sequences,
including morpheme structure rules (Halle, 1959)

5For convenience, we just use standard orthography to
represent actual and possible words, rather than phoneme
strings.



or conditions (Stanley, 1967). Recently, Futrell
et al. (2017) take such approaches as inspiration for
a generative model over feature dependency graphs.
We, too, examine decomposition of phonemes into
features for representation in our model (see §4.1),
though in general this only provided modeling
improvements over atomic phoneme symbols in
a low-resource scenario.

Much of the work in phonotactic modeling is
intended to explain the sorts of grammaticality
judgments exemplified by the examples of Chom-
sky and Halle (1965) discussed earlier. Recent
work is typically founded on the commonly held
perspective that such judgements are gradient6

hence amenable to stochastic modeling, e.g.,
Hayes and Wilson (2008) and Futrell et al.
(2017)—though cf. Gorman (2013). In this paper,
however, we are looking at phonotactic modeling
as the means for assessing phonotactic complexity
and discovering potential evidence of trade-offs
cross-linguistically, and are not strictly speaking
evaluating the model on its ability to capture such
judgments, gradient or otherwise.

2.4 Phonotactic probability and surprisal

A word’s phonotactic probability has been shown
to influence both processing and learning of lan-
guage. Words with high phonotactic probabilities
(see brief notes on the operationalization of this be-
low) have been shown to speed speech processing,
both recognition (e.g., Vitevitch and Luce, 1999)
and production (e.g., Goldrick and Larson, 2008).
Phonotactically probable words in a language have
also been shown to be easier to learn (Storkel, 2001,
2003; Coady and Aslin, 2004, inter alia), although
such an effect is also influenced by neighborhood
density (Coady and Aslin, 2003), as are the speech
processing effects (Vitevitch and Luce, 1999). In-
formally, phonological neighborhood density is the
number of similar sounding words in the lexicon,
which, to the extent that high phonotactic proba-
bility implies phonotactic patterns frequent in the
lexicon, typically correlates to some degree with
phonotactic probability—i.e., dense neighborhoods
will typically consist of phonotactically probable
words. Some effort has been made to disentangle
the effect of these two characteristics (Vitevitch
and Luce, 1999; Storkel et al., 2006; Storkel and

6Gradient judgments would account for the fact that bwick
is typically judged to be a possible English word like blick but
not as good. In other words, bwick is better than bnick but not
as good as blick.

Lee, 2011, inter alia).

Within the psycholinguistics literature refer-
enced above, phonotactic probability was typically
operationalized by summing or averaging the fre-
quency with which single phonemes and phoneme
bigrams occur, either overall or in certain word
positions (initial, medial, final); and neighborhood
density of a word is typically the number of words
in a lexicon that have Levenshtein distance 1 from
the word (see, e.g., Storkel and Hoover, 2010).
Note that these measures are used to characterize
specific words, i.e., given a lexicon, these measures
allow for the designation of high versus low phono-
tactic probability words and high versus low neigh-
borhood density words, which is useful for design-
ing experimental stimuli. Our bits-per-phoneme
measure, in contrast, is used to characterize the
distribution over a sample of a language rather
than specific individual words in that language.

Other work has made use of phonotactic proba-
bility to examine how such processing and learning
considerations may impact the lexicon. Dautriche
et al. (2017) take phonotactic probability as one
component of ease of processing and learning—the
other being perceptual confusability—that might
influence how lexicons become organized over
time. They operationalize phonotactic probabil-
ity via generative phonotactic models (phoneme
n-gram models and probabilistic context-free gram-
mars with syllable structure), hence closer to the
approaches described in this paper than the work
cited earlier in this section. Generating artificial lex-
icons from such models, they find that real lexicons
demonstrate higher network density (as indicated
by Levenshtein distances, frequency of minimal
pairs, and other measures) than the randomly gener-
ated lexicons, suggesting that the pressure towards
highly clustered lexicons is driven by more than
just phonotactic probability.

Evidence of pressure towards communication ef-
ficiency in the lexicon has focused on both phono-
tactic probability and word length. The information
content, as measured by the probability of a word
in context, is shown to correlate with orthographic
length (taken as a proxy for phonological word
length) (Piantadosi et al., 2009, 2011). Piantadosi
et al. (2012) show that words with lower bits per
phoneme have higher rates of homophony and pol-
ysemy, in support of their hypothesis that words
that are easier to process will have higher levels
of ambiguity. Relatedly, Mahowald et al. (2018)



demonstrate, in nearly all of the 96 languages in-
vestigated, a high correlation between orthographic
probability (as proxy for phonotactic probability)
and frequency, i.e., frequently used forms tend to be
phonotactically highly probable, at least within the
word lengths examined (3-7 symbols). A similar
perspective on the role of predictability in phonol-
ogy holds that words that are high probability in
context (i.e., low surprisal) tend to be reduced, and
those that are low probabilty in context are prone to
change (Hume and Mailhot, 2013) or to some kind
of enhancement (Hall et al., 2018). As Priva and
Jaeger (2018) point out, frequency, predictabilty
and information content (what they call inform-
tivity and operationalize as expected predictabil-
ity) are related and easily confounded, hence the
perspectives presented by these papers are closely
related. Again, for these studies and those cited
earlier, such measures are used to characterize in-
dividual words within a language rather than the
lexicon as a whole.

3 The Probabilistic Lexicon

In this work, we are interested in a hypothetical
phonotactic distribution plex : Σ∗ → R+ over the
lexicon. In the context of phonology, we interpret
Σ∗ as all “universally possible phonological
surface forms,” following Hayes and Wilson
(2008).7 The distribution plex, then, assigns a
probability to every possible surface form x ∈ Σ∗.
In the special case that plex is a log-linear model,
then we arrive at what is known as a maximum
entropy grammar (Goldwater and Johnson, 2003;
Jäger, 2007). A good distribution plex should
assign high probability to phonotactically valid
words, including non-existent ones, but little
probability to phonotactic impossibilities. For
instance, the possible English word blick should
receive much higher probability than ∗bnick, which
is not a possible English word. The lexicon of a
language, then, is considered to be generated as
samples without replacement from plex.

If we accept the existence of the distribution plex,
then a natural manner by which we should measure
the phonological complexity of language is through
Shannon’s entropy (Cover and Thomas, 2012):

H(plex) = −
∑
x∈Σ∗

plex(x) log plex(x) (1)

The units of H(plex) are bits as we take log to be
7Hayes and Wilson (2008) label Σ∗ as Ω.

base 2. Specifically, we will be interested in bits
per phoneme, that is, how much information each
phoneme in a word conveys, on average.

3.1 Linguistic Rationale

Here we seek to make a linguistic argument for
the adoption of bits per phoneme as a metric for
complexity in the phonological literature. Bits are
fundamentally units of predictability: If the entropy
of your distribution is higher, that is more bits, then
it is less predictable, and if the entropy is lower,
that is, fewer bits, then it is more predictable with
an entropy of 0 indicating determinism.

Holistic Treatment. When we just count the
number of distinctions in individual parts of the
phonology, e.g., number of vowels or number of
consonants, we do not get a holistic picture of
how these pieces interact. A simple probabilistic
treatment will inherently capture nuanced inter-
actions. Indeed, it is not clear how to balance
the number of consonants, the number of vowels
and the number of tones to get a single number
of phonological complexity. Probabilistically
modeling phonological strings, however, does
capture this. We judge the complexity of a
phonological system as its entropy.

Longer-Distance Dependencies. To the best of
the authors’ knowledge, the largest phonological
unit that has been considered in the context
of cross-linguistic phonological complexity is
the syllable, as discussed in §2.2. However,
the syllable clearly has limitations. It cannot
capture, tautologically, cross-syllabic phonological
processes, which abound in the languages of the
world. For instance, vowel and consonant harmony
are quite common cross-linguistically. Naturally,
a desideratum for any measure of phonological
complexity is to consider all levels of phonological
processes. Examples of vowel harmony in Turkish
are presented in Tab. 1.

Frequency Information. None of the previously
proposed phonological complexity measures deals
with the fact that certain patterns are more frequent
than others; probability models inherently handle
this as well. Indeed, consider the role of the un-
voiced velar fricative /x/ in English; while not part
of the canonical consonant inventory, /x/ neverthe-
less appears in a variety of loanwords. For instance,
many native English speakers do pronounce the last
name of composer Johann Sebastian Bach as /bax/.



English Turkish English Turkish

ear kulak throat boğaz
rain yağmur foam köpük
summit zirve claw pençe
nail tırnak herd sürü
horse beygir dog köpek

Table 1: Turkish evinces two types of vowel harmony,
front-back and round-unround. Here we focus on just
front-back harmony. The examples in the table above
are such that all vowels in a word are either back (ı, u,
a, o) or front (i, ü, e, ö), which is generally the case.

Moreover, English phonology acts upon /x/ as one
would expect: consider Morris Halle’s (1978) ex-
ample Sandra out-Bached Bach, where the second
word is pronounced /out-baxt/ with a final /t/ rather
than a /d/. We conclude that /x/ is in the consonant
inventory of at least some native English speakers.
However, counting it on equal status with the far
more common /k/ when determining complexity
seems incorrect. Our probabilistic metric covers
this corner case elegantly.

Relatively Modest Annotation Requirements.
Many of these metrics require a linguist’s analysis
of the language. This is a tall order for many lan-
guages. Our probabilistic approach only requires
relatively simple annotations, namely, a Swadesh
(1955)-style list in the international phonetic al-
phabet (IPA) to estimate a distribution. When dis-
cussing why he limits himself to counting complex-
ities, Maddieson (2009) writes:

“[t]he factors considered in these studies
only involved the inventories of conso-
nant and vowel contrasts, the tonal sys-
tem, if any, and the elaboration of the
syllable canon. It is relatively easy to
find answers for a good many languages
to such questions as ‘how many conso-
nants does this language distinguish?’ or
‘how many types of syllable structures
does this language allow?’ ”

The moment one searches for data on more elab-
orate notions of complexity, e.g., the existence of
vowel harmony, one is faced with the paucity of
data—a linguist must have analyzed the data.

3.2 Constraints Reduce Entropy
Many phonologies in the world employ hard con-
straints, e.g., a syllable final obstruent must be de-
voiced or the vowels in a word must be harmonic.

Using our definition of phonological complexity
as entropy, we can prove a general result that any
hard-constraining process will reduce entropy, thus,
making the phonology less complex. The fact that
this holds for any hard contraint, be it vowel har-
mony or final-obstruent devoicing, is a fact that
conditioning reduces entropy.

3.3 A Variational Upper Bound

If we want to compute eq. (1), we are immediately
faced with two problems. First, we do not know
plex: we simply assume the existence of such a
distribution from which the words of the lexicon
were drawn. Second, even if we did know plex,
computation of the H(plex) would be woefully in-
tractable, as it involves an infinite sum. Following
Brown et al. (1992), we tackle both of these issues
together. Note that this line of reasoning follows
Cotterell et al. (2018) and Mielke et al. (2019) who
use a similar technique for measuring language
complexity at the sentence level.

We start with a basic inequality from informa-
tion theory. For any distribution qlex with the same
support as plex, the cross-entropy provides an upper
bound on the entropy, i.e.,

H(plex) ≤ H(plex, qlex) (2)

where cross-entropy is defined as

H(plex, qlex) = −
∑
x∈Σ∗

plex(x) log qlex(x) (3)

Note that eq. (2) is tight if and only if plex = qlex.
We still are not done, as eq. (3) still requires knowl-
edge of plex and involves an infinite sum. However,
we are now in a position to exploit samples from
plex. Specifically, given x̃(i) ∼ plex, we approxi-
mate

H(plex, qlex) ≈ −
1

N

N∑
i=1

log qlex(x̃
(i)) (4)

with equality if we let N → ∞. In information
theory, this equality in the limit is called the asymp-
totic equipartition property and follows easily from
the weak law of large numbers. Now, we have an
empirical procedure for estimating an upper bound
on H(plex). For the rest of the paper, we will use
the right-hand side of eq. (4) as a surrogate for the
phonotactic complexity of a language.



How to choose qlex? Choosing a good qlex is a
two-step process. First, we choose a variational
family Q. Then, we choose a specific qlex ∈ Q by
minimizing the right-hand side of eq. (4)

qlex = argsupq∈Q
1

N

N∑
i=1

log q(x̃(i)) (5)

This procedure corresponds to maximum likeli-
hood estimation. In this work, we consider two
variational families: (i) a phoneme n-gram model,
and (ii) a phoneme-level RNN language model. We
describe each in §4.1.

3.4 A Note on Types and Tokens

To make the implicit explicit, in this work we will
exclusively be modeling types, rather than tokens.
We briefly justify this discussion from both theoret-
ical and practical concerns. From a theoretical side,
a token-based model is unlikely to correctly model
an OOV distribution as very frequent tokens often
display unusual phonotactics for historical reasons.
A classic example comes from English: consider
the appearance of /D/. Judging by token-frequency,
/D/ is quite common as it starts some of the most
common words in the language: the, they, that, etc.
However, novel words categorically avoid initial /D/.
From a statistical point of view, one manner to jus-
tify type-level modeling is through the Pitman–Yor
process (Ishwaran and James, 2003). Goldwater
et al. (2006) showed that type-level modeling is a
special case of the stochastic process, writing that
they “justif[y] the appearance of type frequencies
in formal analyses of natural language.”

Practically, using token-level frequencies, even
in a dampened form, is not possible due to the
large selection of languages we model. Most of the
languages we consider do not have corpora large
enough to get reasonable token estimates. More-
over, as many of the languages we consider have
a small number of native speakers, and, in extreme
cases, are endangered, the situation is unlikely to
remedy itself, forcing the phonotactician to rely
on types.

4 Methods

4.1 Phoneme-Level Language Models

Notation. Let Σ be a discrete alphabet of sym-
bols from the international phonetic alphabet (IPA),
including special beginning-of-string and end-of-
string symbols. A character level language model

(LM) models a probability distribution over Σ∗:

p(x) =

|x|∏
i=1

p (xi | x<i) (6)

Trigram LM. n-grams assume the sequence fol-
lows a (n−1)-order Markov model, conditioning
the probability of a phoneme on the (n−1) previ-
ous ones

fn(xi | x<i) =
count(xi, xi−1, . . . , xi+1−n)

count(xi−1, . . . , xi+1−n)
(7)

where we assume the string x is properly padded
with beginning and end-of-string symbols.

The trigram model used in this work is estimated
as the deleted interpolation (Jelinek, 1980) of the
trigram, bigram and unigram relative frequency
estimates

p3(xi | x<i) =

3∑
n=1

αnfn(xi | x<i) (8)

where the mixture parameters αn were estimated
via Bayesian optimization with a Gaussian prior
maximizing the expected improvement on a
validation set, as discussed by Snoek et al. (2012).

Recurrent Neural LM. Recurrent neural net-
works excel in language modeling, being able
to capture complex distributions p(xi | x<i)
(Mikolov et al., 2010; Sundermeyer et al., 2012).
Empirically, recent work has observed dependen-
cies on up to around 200 tokens (Khandelwal et al.,
2018). We use a character-level Long Short-Term
Memory (LSTM, Hochreiter and Schmidhuber,
1997) language model, which is the state of the
art for character-level language modeling (Merity
et al., 2018).

Our architecture receives a sequence of tokens
x ∈ Σ∗ and embeds each token xi ∈ Σ using a
dictionary-lookup embedding table. This results in
vectors zi ∈ Rd which are fed into an LSTM. This
LSTM produces a high-dimensional representation
of the sequence, often termed hidden states:

hi = LSTM (zi−1, hi−1) ∈ Rd (9)

These representations are then fed into a softmax
to produce a distribution over the next character:

p (xi | x<i) = softmax (Whi + b) (10)

where W ∈ R|V |×d is a final projection matrix and
b ∈ R|Σ| is a bias term. In our implementation,
h0 is a vector of all zeros and z0 is the lookup
embedding for the beginning-of-string token.



Phoneme Embedding LM. When developing a
phoneme-level recurrent neural LM, one can use a
base of phonemic features—e.g. Phoible (Moran
et al., 2014)—to implement a multi-hot embedding
such that similar phonemes will have similar em-
bedding representations. A phoneme i will have a
set of binary attributes a(k)

i (e.g. stress, sonorant,
nasal), each with its corresponding embedding rep-
resentation z(k). A phoneme embedding will, then,
be composed by the element-wise average of each
of its features lookup embedding

zi =

∑
k a

(k)
i z(k)∑

k a
(k)
i

(11)

where a(j)
i is 1 if phoneme i presents attribute j and

z(j) is the lookup embeddings of attribute j. This
architecture forces similar phonemes, measured in
terms of overlap in distinctive features, to have
similar representations.

4.2 NorthEuraLex Data
We make use of data from the NorthEuraLex corpus
(Dellert and Jäger, 2017). The corpus is a concept-
aligned multi-lingual lexicon with data from 107
languages. The lexicons contains 1016 “basic” con-
cepts. Importantly, NorthEuraLex is appealing for
our study as all the words are written in a unified
IPA scheme. A sample of the lexicon is provided
in Tab. 2. For the results reported in this paper, we
omitted Mandarin, since no tone information was
included in its annotations, causing its phonotactics
to be greatly underspecified. No other tonal lan-
guages were included in the corpus, so all reported
results are over 106 languages.

Why is Base-Concept Aligned Important?
Making use of data that is concept aligned across
the languages provides a certain amount of control
(to the extent possible) of the influence of linguistic
content on the forms that we are modeling. In other
words, these forms should be largely comparable
across the languages in terms of how common they
are in the active vocabulary of adult speakers. Fur-
ther, base concepts as defined for the collection are
more likely to be lemmas without inflection, thus
reducing the influence of morphological processes
on the results.8

8Most of the concepts in the dataset do not contain function
words and verbs are in the bare infinitive form – e.g., have,
instead of to have) – although there are a few exceptions.
For example, the German word hundert is represented as a
hundred in English.

Concept Language Word IPA

eye portuguese olho /oLu/
ear finnish korva /kOrVA/
give north karelian antua /AntUA/
tooth veps hambaz /hAmbAz/
black northern sami c̆áhppes /

>
Ùaahppes/

immediately hill mari töpök /tørøk/

Table 2: Sample of the lexicon in NorthEuraLex corpus.

To test this latter assertion, we made use of the
UniMorph9 morphological database (Kirov et al.,
2018) to look up words and assess the percentage
that correspond to lemmas or base forms. Of the
106 languages in our collection, 48 are also in the
UniMorph database, and 46 annotate their lemmas
in a way that allowed for simple string matching
with our word forms. For these 46 languages, on av-
erage we found 313 words in UniMorph of the 1016
concepts (median 328). A mean of 87.2% (median
93.3%; minimum 58.6%) of these matched lemmas
for that language in the UniMorph database. This
rough string matching approach provides some in-
dication that the items in the corpus are largely
composed of such base forms.

Dataset Limitations. Unfortunately, there is less
typological diversity in our dataset than we would
ordinarily desire. NorthEuraLex draws its lan-
guages from 21 distinct language families that are
spoken in Europe and Asia. This excludes lan-
guages indigenous to the Americas,10 Australia,
Africa and South-East Asia. While lamentable,
we know of no other concept-aligned lexicon with
broader typological diversity that is written in a
unified phonetic alphabet, so we must save studies
of more typologically diverse set of languages for
future work.

In addition, we note that the process of base
concept selection and identification of correspond-
ing forms from each language (detailed in Dellert,
2015, 2017) was non-trivial, and some of the corpus
design decisions may have resulted in somewhat
biased samples in some languages. For example,
there was an attempt to minimize the frequency of
loanwords in the dataset, which may make the lexi-
cons in loanword heavy languages, such as English
with its extensive Latinate vocabulary, somewhat
less representative of everyday use than in other

9https://unimorph.github.io
10Inuit languages, which are genetically related to the lan-

guages of Siberia, are included in the lexicon.



languages. Similarly, the creation of a common
IPA representation over this number of languages
required choices that could potentially result in
corpus artifacts. As with the issue of linguistic di-
versity, we acknowledge that the resource has some
limitations but claim that it is the best currently
available dataset for this work.

Splitting the Data. We split the data at the con-
cept level into 10 folds, used for cross validation.
We create train-dev-test splits where the training
portion has 8 folds (≈ 812 concepts) and the dev
and test portions have 1 fold each (≈ 102 con-
cepts). We then create language-specific sets with
the language-specific words for the concept to be
rendered. Cross-validation allows us to have all
1016 concepts in our test sets (although evaluated
using different model instances), and we do our
following studies using all of them.

4.3 Artificial Languages
In addition to naturally occurring languages, we
are also interested in artificial ones. Why? We
wish to validate our models in a controlled setting,
quantifying the contribution of specific linguistic
phenomena to our complexity measure. Thus, de-
veloping artificial languages, which only differ with
respect to one phonological property is useful.

The Role of Final-Obstruent Devoicing. Final-
obstruent devoicing reduces phonological complex-
ity under our information-theoretic metric. The
reason is simple: there are fewer valid syllables
as all those with voiced final obstruents are ruled
out. Indeed, this point is also true of the syllable
counting metric discussed in §2.2. One computa-
tional notion of complexity might say that the com-
plexity of the phonology is equal to the number
of states required to encode the transduction from
an underlying form to a surface form in a minimal
finite-state transduction. Note that all SPE-style
rules may be so encoded (Kaplan and Kay, 1994).
Thus, the complexity of the phonotactics could be
said to be related to the number of SPE-style rules
that operate. In contrast, under our metric, any
process that constrains the number of possibilities
will, inherently, reduce complexity. The studies in
§5.3 allow us to examine the magnitude of such a
reduction, and validate our models with respect to
this expected behavior.

We create two artificial datasets without final-
obstruent devoicing based on the German and
Dutch portions of NorthEurLex. We reverse the

Correlation

Measure Pearson r Spearman ρ

Number of:
phonemes -0.047 -0.054
vowels -0.164 -0.162
consonants 0.030 0.045

Bits/phoneme:
unigram -0.217 -0.222
trigram -0.682 -0.672
LSTM -0.762 -0.744

Table 3: Pearson and Spearman rank correlation coeffi-
cients between complexity measures and average word
length in phoneme segments.

process, using the orthography as a guide. For ex-
ample, the German /ţu:k/ is converted to /ţu:g/
based on the orthography Zug.

The Role of Vowel Harmony. Like final obstru-
ent devoicing, vowel harmony plays a roll in re-
ducing the number of licit syllables. In contrast to
final obstruent devoicing, however, vowel harmony
acts cross-syllabically. Consider the Turkish lex-
icon, where most, but not all basic lexical items
obey vowel harmony. Processes like this reduce
the entropy of plex and, thus, can be considered as
creating a less complex phonotactics.

For vowel harmony, we create 10 artificial
datasets by randomly replacing each vowel in a
word with a new sampled (with replacement) vowel
from that language’s vowel inventory. This breaks
all vowel harmony, but keeps the syllabic structure.

5 Results

5.1 Study 1: Bits Per Phoneme Negatively
Correlates with Word Length

As stated earlier, Pellegrino et al. (2011) investi-
gated a complexity trade-off with the information
density of speech. From a 7-language study they
found a strong correlation (R = −0.94) between
the information density and the syllabic complexity
of a language. One hypothesis adduced to explain
these findings is that, for functional reasons, the
rate of linguistic information is very similar cross-
linguistically. Inspired by their study, we conduct
a similar study with our phonotactic setup. We
hypothesize that the bits per phoneme for a given
concept correlates with the number of phonemes
in the word. Moreover, the bits per word should be
similar across languages.
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Figure 2: Per-phoneme complexity vs average word length under both a trigram and an LSTM language model.
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Figure 3: Conventional measures of phonological com-
plexity vs average word length. These complexity mea-
sures are based in inventory size.

We consider the relation between the average
bits per phoneme of a held-out portion of a lan-
guage’s lexicon, as measured by our best language
model, and the average length of the words in that
language. We present the results in Figures 2 and
3 and in Tab. 3. We find a strong correlation under
the LSTM LM (Spearman’s ρ = −0.744 with p <
10−19). At the same time, we only see a weak corre-
lation under conventional measures of phonotactic
complexity, such as vowel inventory size (Spear-
man’s ρ = −0.162 with p = 0.098). In Fig. 4,
we plot the kernel density estimate and histogram
densities (both 10 and 100 bins) of word-level com-
plexity (bits per word).
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Figure 4: Kernel density estimate (KDE) of the average
phonotactic complexity per word across 106 different
languages. Different languages tend to present similar
complexities (bits per word).

5.2 Study 2: Possible Confounds for Negative
Correlations

One possible confound for these results is that
phonemes later in a word may in general have
higher probability given the previous phonemes
than those earlier in the string. This sort of posi-
tional effect was demonstrated in Dutch (van Son
and Pols, 2003), where position in the word ac-
counted for much of the variance in segmental
information.11 To ensure that we are not simply

11We briefly note that the van Son and Pols (2003) study
did not make use of a train/dev/test split of their data, but
rather simply analyzed raw relative frequency over their Dutch
corpus. As a result, all positions beyond any word onset that is
unique in their corpus would have probability one, leading to
a more extreme position effect than we would observe using



replicating such a positional effect across many lan-
guages, we performed several additional analyses.

Truncated words. First, we calculated the bits-
per-phoneme for just the first three positions in
the word, and then looked at the correlation be-
tween this word-onset bits-per-phoneme and the
average (full) word length in phoneme segments. In
other words, for the purpose of calculating bits-per-
phoneme, we truncated all words to a maximum
of three phonemes, and in such a way explicitly
eliminated the contribution of positions later in any
word. Using the LSTM model, this yielded a Spear-
man correlation of ρ = −0.469 (p < 10−7) , in
contrast to ρ = −0.744 without such truncation
(reported in Tab. 3). This suggests that there is
a contribution of later positions to the effect pre-
sented in Tab. 3 that we lose by eliding them, but
that even in the earlier positions of the word we are
seeing a trade-off with full average word length.

Correlation with phoneme position. We next
looked to measure a position effect directly, by
calculating the correlation between word position
and bits for that position across all languages. Here
we find a Spearman correlation of ρ = −0.429
(p < 10−200), which again supports the contention
that later positions in general require fewer bits
to encode. Nonetheless, this correlation is still
weaker than the per-language word length one (of
ρ = −0.744).

Per-word correlations. We also calculated the
correlation between word length and bits per
phoneme across all languages (without averaging
per language here). The Spearman correlation be-
tween these factors—at the word level using all
languages—is ρ = −0.312 (p < 10−19). Analyz-
ing each language individually, there is an average
Spearman’s ρ = −0.257 (p < 10−19) between bits
per phoneme and word length. The minimum neg-
ative (i.e., highest magnitude) correlation of any
language in the set is ρ = −0.607. These per word
correlations are reported in the upper half of Tab. 4.

Permuted ‘language’ correlations. Finally, to
determine if our language effects perhaps arise
due to the averaging of word lengths and bits per
phoneme for each language, we ran a permutation
test on languages. We shuffle words (with their
pre-calculated bits-per-phoneme values) into 106

regularization and validating on unseen forms.

Correlation

Measure Pearson r Spearman ρ

Per Word:
all languages -0.269 -0.312
each language (avg) -0.220 -0.257
each language (min) -0.561 -0.607

Per Language:
Fake (avg) -0.270 -0.254
Fake (min) -0.586 -0.568
Real -0.762 -0.744

Table 4: Pearson and Spearman rank correlation coeffi-
cients between complexity measures and word length
in phoneme segments. All correlations are statistically
significant with p < 10−8.

Complexity

Model Orig Art Diff

trigram:
German 3.703 3.708 0.005 (0.13%)
Dutch 3.607 3.629 0.022 (0.58%)†

LSTM:
German 3.230 3.268 0.038 (1.18%)†

Dutch 3.161 3.191 0.030 (0.95%)†

Table 5: Complexities for original and artificial lan-
guages when removing final-obstruent devoicing. † rep-
resents an statistically significant difference with p <
0.05

sets with the same size as the original languages—
thus creating fake ‘languages’. We take the aver-
age word length and bits per phoneme in each of
these fake languages and compare the correlation—
returning to the ‘language’ level this time—with
the original correlation. After running this test for
104 permutations, we found no shuffled set with an
equal or higher Spearman (or Pearson) correlation
than the real set. Thus, with a strong confidence
(p < 10−4) we can state there is a language level
effect. Average and minimum negative correlations
for these ‘fake’ languages (as well as the real set
for ease of comparison) are presented in the lower
half of Tab. 4.

5.3 Study 3: Constraining Languages
Reduces Phonotactic Complexity

Final-obstruent devoicing and vowel harmony re-
duce the number of licit syllables in a language,
hence reducing the entropy. To determine the mag-
nitude that such effects can have on the measure
for our different model types, we conduct two stud-
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Figure 5: Complexities for natural and artifical lan-
guages when removing vowel harmony. A paired per-
mutation test showed all differences present statistical
difference with p < 0.01.

ies. In the first, we remove final-obstruent de-
voicing from the German and Dutch languages in
NorthEuraLex, as discussed in §4.3. In the sec-
ond study, we remove vowel harmony from 10
languages that have it,12 as also explained in §4.3.

After deriving two artificial languages without
obstruent devoicing from both German and Dutch,
we used 10 fold cross validation to train models for
each language. The statistical relevance of differ-
ences between normal and artificial languages was
analyzed using paired permutation tests between
the pairs. Results are presented in Tab. 5. We see
that the n-gram can capture this change in com-
plexity for Dutch, but not for German. At the same
time, the LSTM shows a statistically significant
increase of ≈ 0.034 bits per phoneme when we
remove obstruent devoicing from both languages.
Fig. 5 presents a similar impact on complexity from
vowel harmony removal, as evidenced by the fact
that all points fall above the equality line. Average
complexity increased by ≈ 0.62 bits per phoneme
(an approximate 16% entropy increase), as mea-
sured by our LSTM models.

In both of these artificial language scenarios,
the LSTM models appeared more sensitive to the
constraint removal, as expected.

5.4 Study 4: Negative Trade-off Persists
Within and Across Families

Moran and Blasi (2014) investigated the correla-
12The languages with vowel harmony are: bua, ckt, evn, fin,

hun, khk, mhr, mnc, myv, tel, and tur.

Correlation

Measure Pearson r Spearman ρ

Number of:
phonemes -0.214 -0.095
vowels -0.383 -0.367
consonants -0.147 -0.092

Bits/phoneme:
unigram -0.267 -0.232
trigram -0.621 -0.520
LSTM -0.778 -0.526

Table 6: Pearson and Spearman correlation between
complexity measures and word length in phoneme seg-
ments averaged across language families.

tion between the number of phonological units in a
language and its average word length across a large
and varied set of languages. They found that, while
these measures of phonotactic complexity (number
of vowels, consonants or phonemes in a language)
are correlated with word length when measured
across a varied set of languages, such a correlation
usually does not hold within language families. We
hypothesize that this is due to their measures being
rather coarse approximations to phonotactic com-
plexity, so that only large changes in the language
would show significant correlation given the noise.
We also hypothesize that our complexity measure is
less noisy, hence should be able to yield significant
correlations both within and across families.

Results in Tab. 3 show a strong correlation for
the LSTM measure, while they show a weak one
for conventional measures of complexity. As stated
before, Moran and Blasi (2014) found that vowel
inventory size shows a strong correlation to word
length on a diverse set of languages, but, as men-
tioned in §4.2, our dataset is more limited than
desired. To test if we can mitigate this effect we
average the complexity measures and word length
per family (instead of per language) and calculate
the same correlations again. These results are pre-
sented in Tab. 6 and show that when we average
these complexity measures per family we indeed
find a stronger correlation between vowel inven-
tory size and average word length, although with
a higher null hypothesis probability (Spearman’s
ρ = −0.367 with p = 0.111). We also see our
LSTM based measure still shows a strong correla-
tion (Spearman’s ρ = −0.526 with p = 0.017).

We now analyze these correlations intra families,
for all family languages in our dataset with at least



Spearman ρ

Family LSTM Vowels # Langs

Dravidian -1.0∗ -0.894 4
Indo-European -0.662∗ -0.218 37
Nakh-Daghestanian -0.771† -0.530 6
Turkic -0.690† -0.773† 8
Uralic -0.874∗ 0.363† 26
∗ Statistically significant with p < 0.01
† Statistically significant with p < 0.1

Table 7: Spearman correlation between complexity mea-
sures and average word length per language family.
Phonotactic complexity in bits per phoneme presents
very strong intra-family correlation with word length
in three of the five families. Size of vowel inventory
presents intra-family correlation in Turkic and Uralic.

4 languages. These results are presented in Tab. 7.
Our LSTM based phonotactic complexity measure
shows strong intra family correlation with average
word length for all five analyzed language families
(−0.662 ≥ ρ ≥ −1.0 with p < 0.1). At the same
time, vowel inventory size only shows a negative
statistically significant correlation within Turkic.

5.5 Study 5: Explicit feature representations
do not generally improve models

Tab. 3 presents strong correlations when using an
LSTM with standard one-hot lookup embedding.
Here we train LSTMs with three different phoneme
embedding models: (1) a typical Lookup embed-
ding, in which each Phoneme has an associated
embedding; (2) a phoneme features based embed-
ding, as explained in §4.1; (3) the concatenation of
the Lookup and the Phoneme embedding. We also
train these models both using independent models
for each language, and with independent models,
but sharing embedding weights across languages.

We first analyze these model variants under the
same lens as used in Study 1. Tab. 8 shows the cor-
relations between the complexity measure resulting
from each of this models and the average number
of phonemes in a word. We find strong correlations
for all of them (−0.740 ≥ ρ ≥ −0.752 with p <
10−18). We also present in Tab. 8 these models’
cross entropy, averaged across all languages. At
least for the methods that we are using here, we de-
rived no benefit from either more explicit featural
representations of the phonemes or by sharing the
embeddings across languages.

We also investigated scenarios using less train-
ing data, and it was only in very sparse scenarios

Model Complexity Spearman ρ

n-Grams:
unigram 4.477 -0.222
trigram 3.270 -0.672

Independent Embeddings:
Lookup 2.976 -0.744
Phoneme 2.992 -0.741
Lookup + Phoneme 2.975 -0.752

Shared Embeddings:
Lookup 2.988 -0.743
Phoneme 2.977 -0.744
Lookup + Phoneme 2.982 -0.740

Table 8: Average cross-entropy across all languages and
the correlation between complexity and average word
length for different models.

(e.g., using just 10% of the training used in our
standard trials, or 81 example words) where we
observed even a small benefit to explicit feature
representations and shared embeddings.

6 Conclusion

We have presented methods for calculating a well-
motivated measure of phonotactic complexity: bits
per phoneme. This measure is derived from in-
formation theory and its value is calculated using
the probability distribution of a language model.
We demonstrate that cross-linguistic comparison
is straightforward using such a measure, and find
a strong negative correlation with average word
length. This trade-off with word length can be
seen as an example of complexity compensation or
perhaps related to communicative capacity.
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