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Abstract

A longstanding debate in semiotics centers on
the relationship between linguistic signs and
their corresponding semantics: is there an ar-
bitrary relationship between a word form and
its meaning, or does some systematic phe-
nomenon pervade? For instance, does the
character bigram gl have any systematic re-
lationship to the meaning of words like glis-
ten, gleam and glow? In this work, we of-
fer a holistic quantification of the systematic-
ity of the sign using mutual information and
recurrent neural networks. We employ these
in a data-driven and massively multilingual
approach to the question, examining 106 lan-
guages. We find a statistically significant re-
duction in entropy when modeling a word
form conditioned on its semantic representa-
tion. Encouragingly, we also recover well-
attested English examples of systematic af-
fixes. We conclude with the meta-point: Our
approximate effect size (measured in bits) is
quite small—despite some amount of system-
aticity between form and meaning, an arbitrary
relationship and its resulting benefits dominate
human language.

1 Introduction

Saussure (1916) expounded on the arbitrariness
of the sign. Seen as a critical facet of human lan-
guage (Hockett, 1960), the idea posits that a sign
in human language (a word, in our inquiry) is struc-
tured at two levels: the signified, which captures
its meaning, and the signifier, which has no mean-
ing but manifests the form of the sign. Saussure
himself, however, also documented instances of
sound symbolism in language (Saussure, 1912). In
this paper, we present computational evidence of
relevance to both aspects of Saussure’s work.

While dominant among linguists, arbitrariness
has been subject to both long theoretical debate
(Wilkins, 1668; Eco, 1995; Johnson, 2004; Pullum
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Figure 1: We use two independent language models to
estimate the mutual information between word forms
and meaning—i.e. systematicity, as per our definition.
The language models provide upper bounds on H(W )
and H(W | V ), which can be used to estimate I(W ;V ).
This estimate is as good as the upper bounds are tight—
see discussion in §3.4.

and Scholz, 2007) and numerous empirical and ex-
perimental studies (Hutchins, 1998; Bergen, 2004;
Monaghan et al., 2011; Abramova and Fernández,
2016; Blasi et al., 2016; Gutierrez et al., 2016;
Dautriche et al., 2017). Taken as a whole, these
studies suggest non-trivial interactions in the form–
meaning interface between the signified and the
signifier (Dingemanse et al., 2015).

Although the new wave of studies on form–
meaning associations range across multiple lan-
guages, methods and working hypotheses, they all
converge on two important dimensions:

1. The description of meaning is parameterized
with pre-defined labels—e.g., by using exist-
ing ontologies like List et al. (2016).

2. The description of forms is restricted to the
presence, absence or sheer number of occur-
rence of particular units (such as phones, syl-
lables or handshapes).

We take an information-theoretic approach to quan-



tifying the relationship between form and mean-
ing using flexible representations in both domains,
rephrasing the question of systematicity: How
much does certainty of one reduce uncertainty of
the other? This gives an operationalization as the
mutual information between form and meaning,
when treating both as random variables—the signi-
fier as a word’s phone string representation in the
International Phonetic Alphabet (IPA), and the sig-
nified as a distributed representation (Mikolov et al.,
2013) for that word’s lexical semantics, devoid of
morphological or other subword information. We
show how to estimate mutual information as the
difference in entropy of two phone-level LSTM
language models—one of which is conditioned on
the semantic representation. This operationaliza-
tion, depicted in Figure 1, allows us to express the
global effect of meaning on form in vocabulary
datasets with wide semantic coverage.

In addition to this lexicon-level characterization
of systematicity, we also show that this paradigm
can be leveraged for studying more narrowly-
defined form-meaning associations such as phones-
themes—submorphemic, meaning-bearing units—
in the style of Gutierrez et al. (2016). These short
sound sequences typically suggest some aspect of
meaning in the words that contain them, like -ump
for rounded things in English. Previous compu-
tational studies, whether focusing on characteriz-
ing the degree of systematicity (Monaghan et al.,
2014b,a, 2011; Shillcock et al., 2001), discovering
phonesthemes (Liu et al., 2018), or both (Gutierrez
et al., 2016), have invariably framed systematic-
ity in terms of distances and/or similarities–the
relation between word-form distance/similarity on
the one hand (e.g., based on string edit distance)
and semantic distance/similarity on the other (e.g.,
as defined within a semantic vector space). Our
methods have the virtue of not relying on some pre-
defined notion of similarity or distance in either
domain for our measurement of systematicity.

Empirically, we focus on two experimental
regimes. First, we focus on a large corpus (CELEX)
of phone transcriptions in Dutch, English, and Ger-
man. In these three languages, we find a significant
yet small mutual information even when control-
ling for grammatical category. Second, we per-
form a massively multilingual exploration of sound–
meaning systematicity (§5.1) on the NorthEuraLex
corpus (Dellert and Jäger, 2017). This corpus con-
tains expanded Swadesh lists in 106 languages us-

ing a unified alphabet of phones. It contains 1016
words in each language, which is often not enough
to detect systematicity—we trade the coverage of
CELEX for the breadth of languages. Nevertheless,
using our information-theoretic operationalization,
in most of the languages considered (87 of 106),
we find a statistically significant reduction in en-
tropy of phone language modeling by conditioning
on a word’s meaning (§5.2). Finally, we find a
weak positive correlation between our computed
mutual information and human judgments of form–
meaning relatedness.

2 Systematic form-meaning associations

2.1 Arbitrariness

The lack of a forceful association between form and
meaning is regarded as a design feature of language
(Hockett, 1960). This arbitrariness of the sign is
thought to provide a flexible and efficient way for
encoding new referents (Monaghan et al., 2011).
It has been claimed that it enhances learnability
because newly acquired concepts can be paired to
any word, instead of devising the word that prop-
erly places the concept in one’s constellation of
concepts (Gasser et al., 2005), and that it facilitates
mental processing compared to an icon-based sym-
bol system, in that the word–meaning map can be
direct (Lupyan and Thompson-Schill, 2012). Most
importantly, decoupling form from meaning allows
communication about things that are not directly
grounded in percepts (Clark, 1998; Dingemanse
et al., 2015). This opens the door to another of
Hockett (1960)’s design features of language: du-
ality of patterning (Martinet, 1949), the idea that
language exists on the level of meaningless units
(the distinctive; typically phonemes) composed to
form the level of meaningful units (the significant;
typically morphemes).

2.2 Non-arbitrariness and systematicty

Contemporary research has established that non-
arbitrary form-meaning associations in vocabu-
lary are more common and diverse than previ-
ously thought (Dingemanse et al., 2015). Some
non-arbitrary associations might be found repeat-
edly across unrelated languages presumably due to
species-wide cognitive biases (Blasi et al., 2016),
others are restricted to language-specific word
classes that allow for more or less transparent
iconic mappings – so-called ideophones, see Dinge-
manse (2012; 2018) – and yet others might emerge



from properties of discourse and usage rather than
meaning per se (Piantadosi et al., 2011).

Systematicity is meant to cover all cases of non-
arbitrary form-meaning associations of moderate
to large presence in a vocabulary within a language
(Dingemanse et al., 2015). In morphology-rich
languages, systematic patterns are readily apparent:
for instance, across a large number of languages
recurring TAM markers or transitivity morphemes
could be used to detect verbs, whereas case markers
or nominalizing morphemes can serve as a cue
for nouns. Yet a sizable portion of research on
systematicity is geared towards subtle patterns at
the word root level, beyond any ostensive rules of
grammar.

By and large, systematicity is hailed as a trait
easing language acquisition. It reduces the radical
uncertainty humans find when first encountering a
new word by providing clues about category and
meaning (Monaghan et al., 2014a). Systematic pat-
terns can display a large scope within a language:
for instance, systematic associations distinguish-
ing nouns from verbs have been found in every
language where a comparison was performed sys-
tematically (e.g. Monaghan et al., 2007). But at
its extreme, systematicity would manifest as an on-
tology encoded phonetically, e.g., all plants begin
with the letter ‘g’, and animals with the letter ‘z’
(Wilkins, 1668; Eco, 1995). As Dingemanse et al.
(2015) note, a system of similar forms expressing
similar meanings “would lead to high confusability
of the very items most in need of differentiation”.

2.3 Phonesthemes

One particular systematic pattern comes in the form
of phonesthemes (Firth, 1964). These are submor-
phemic and mostly unproductive affixal units, usu-
ally flagging a relatively small semantic domain. A
classic example in English is gl-, a prefix for words
relating to light or vision, e.g. glimmer, glisten,
glitter, gleam, glow and glint (Bergen, 2004).

Phonesthemes have psychological import; they
can be shown to accelerate reaction times in lan-
guage processing (Hutchins, 1998; Bergen, 2004;
Magnus, 2000). They have been attested in En-
glish (Wallis, 1699; Firth, 1930; Marchand, 1959;
Bolinger, 1949, 2014), Swedish (Abelin, 1999),
Japanese (Hamano, 1998), Ojibwa (Rhodes, 1981),
Hmong (Ratliff, 1992), and myriad Austronesian
languages (McCune, 1985; Blust, 1988). In fact,
as Bergen (2004) notes, “every systematic study

of a particular language has produced results sug-
gesting that that language has phonesthemes”. Liu
et al. (2018) survey computational approaches for
identifying phonesthemes.

3 Estimating Systematicity with
Information Theory

3.1 Notation and formalization
Following Shillcock et al. (2001), we define a
sign as a tuple (v(i),w(i)) of a word’s distributional
semantic representation (a vector) and its phone
string representation (a word form). For a natu-
ral language with a set of phones Σ (including a
special end-of-string token), we take the space of
word forms to be Σ∗, with w(i) ∈ Σ∗. We treat the
semantic space as a high-dimensional real vector
space Rd , with v(i) ∈ Rd . The particular v(i) and
w(i) are instances of random variables V and W .

Further, we want to hunt down potential phon-
esthemes; we define these to be phone sequences
which, compared to others of their length, have a
larger mutual information with their meaning. We
eliminate positional confounds by examining only
words’ prefixes w<k and suffixes w>k.1

3.2 A variational upper bound
Entropy, the workhorse of information theory, cap-
tures the uncertainty of a probability distribution.
In our language modeling case, the quantity is

H(W )≡ ∑
w∈Σ∗

Pr(w) log
1

Pr(w)
. (1)

Entropy is the average number of bits required to
represent a string in the distribution, under an op-
timal coding scheme. When computing it, we are
faced with two problems: We do not know the dis-
tribution over word-forms Pr(W ) and, even if we
did, computing Equation 1 requires summing over
the infinite set of possible strings Σ∗.

We follow Brown et al. (1992) in tackling these
problems together. Approximating Pr(W ) with any
known distribution Q(W ), we get a variational up-
per bound on H(W ) from their cross-entropy, i.e.

H(W )≤ HQ(W ) (2a)

= ∑
w∈Σ∗

Pr(w) log
1

Q(w)
. (2b)

1 In line with, e.g., Cucerzan and Yarowsky (2003), we
treat affixes as word-initial or word-final sequences, regardless
of their status as attested morphological entities.



Equation 2b still requires knowledge of Pr(W ) and
involves an infinite sum, though. Nonetheless, we
can use a finite set W̃ of samples from Pr(W ) to
get an empirical estimate of this value.

HQ(W )≈ 1
N

N

∑
i=1

log
1

Q
(
w̃(i)

) , w̃(i) ∈ W̃∼ Pr(W )

(3)
with equality if we let N→ ∞.2 We now use Equa-
tion 3 as an estimate for the entropy of a lexicon.

Conditional entropy Conditional entropy re-
flects the average additional number of bits needed
to represent an event, given knowledge of another
random variable. If V completely determines W ,
then the quantity is 0. Conversely, if the variables
are independent, then H(W ) = H(W | V ). Analo-
gously to the unconditional case, we can get an
upper bound for the conditional entropy by approx-
imating Pr(W |V ) with another distribution Q.

HQ(W |V )≈ 1
N

N

∑
i=1

log
1

Q
(
w̃(i) | ṽ(i)

) (4)

where (w̃(i), ṽ(i))∼ Pr(W,V ).

3.3 Systematicity as mutual information
Mutual information (I) measures the amount of in-
formation (bits) that the knowledge of either form
or meaning provides about the other. It is the differ-
ence between the entropy and conditional entropy:

I(W ;V )≡ H(W )−H(W |V ) (5a)

≈ HQ(W )−HQ(W |V ). (5b)

Systematicity will thus be framed as (statistically
significant) nonzero mutual information I(V ;W ).

3.4 Learning Q

Our method relies on decomposing mutual infor-
mation into a difference of entropies, as shown in
Equation 5b. We use upper bounds on both the
entropy and conditional entropy measures, so our
calculated mutual information is an estimate.

This estimate is as good as our bounds are tight,
being perfect when Pr(W ) = Q(W ) and Pr(W |V ) =
Q(W |V ). Still, as we subtract two upper bounds,
we cannot guarantee that our MI estimate ap-
proaches the real MI from above or below because
we do not know which of the entropies’ bounds are

2 This is a direct consequence of the law of large numbers.

tighter. There is nothing principled that we can say
about the result, except that it is consistent.

The procedure for learning the distribution Q is,
thus, essential to our method. We must first define a
family of distributions Ψ from which Q is learned.
Then, we learn Q ∈ Ψ by minimizing the right-
hand-size of Equation 2b—which corresponds to
maximum likelihood estimation

Q = arg inf
q∈Ψ

1
N

N

∑
i=1

log
1

q
(
w̃(i)

) . (6)

In this work, we employ a state-of-the-art phone-
level LSTM language model as our Ψ to approxi-
mate Pr(W ) as closely as possible.

3.5 Recurrent neural LM
A phone-level language model (LM) provides a
probability distribution over Σ∗:

Pr(w) =
|w|+1

∏
i=1

Pr(wi | w<i) . (7)

Recurrent neural networks are great repre-
sentation extractors, being able to model long
dependencies—up to a few hundred tokens (Khan-
delwal et al., 2018)—and complex distributions
Pr(wi | w<i) (Mikolov et al., 2010; Sundermeyer
et al., 2012). We choose LSTM language models
in particular, the state-of-the-art for character-level
language modeling (Merity et al., 2018).3

Our architecture embeds a word—a sequence
of tokens wi ∈ Σ—using an embedding lookup ta-
ble, resulting in vectors zi ∈ Rd . These are fed
into an LSTM, which produces high-dimensional
representations of the sequence (hidden states):

h j = LSTM(h j−1,z j) , j ∈ {1, . . . ,n+1}, (8)

where h0 is the zero vector. Each hidden state is
linearly transformed and fed into a softmax func-
tion, producing a distribution over the next phone:
Pr(wi | w<i) = softmax(Whi +b).

4 Experimental Design

4.1 Datasets
We first analyze the CELEX database (Baayen
et al., 1995), which provides many word types for
Dutch, English, and German. In measuring sys-
tematicity, we control for morphological variation
by only considering monomorphemic words, as in

3 Our tokens are phones rather than graphemes.



Dautriche et al. (2017). Our type-level resource
contains lemmata, eliminating the noisy effect of
morphologically inflected forms. CELEX contains
6040 English, 3864 German, and 3603 Dutch lem-
mata for which we have embeddings.

While CELEX is a large, well annotated corpus,
it only spans three lexically related languages. The
NorthEuraLex database (Dellert and Jäger, 2017) is
thus appealing. It is a lexicon of 1016 “basic” con-
cepts, written in a unified IPA scheme and aligned
across 107 languages that span 21 language fami-
lies (including isolates).4 While we cannot restrict
NorthEuraLex to monomorphemic words (because
it was not annotated by linguists and segmentation
models are weak for its low-resource languages),
it mainly contains word types for basic concepts—
e.g., animal names or verbs—so we are comfort-
able in the modeling assumption that the words are
not decomposable into multiple morphemes.

Unlike Dautriche et al. (2017), who draw lexi-
cons from Wikipedia, or Otis and Sagi (2008), we
directly use a phone string representation, rather
than their proxy of using each language’s orthog-
raphy. This makes our work the first to quantify
the interface between phones and meaning in a
massively multilingual setting.

Blasi et al. (2016) is the only large-scale ex-
ploration of phonetic representations that we find.
They examine 40 aligned concepts over 4000 lan-
guages and identify that sound correspondences
exist across the vast majority. Their resource (Wich-
mann et al., 2018) does not have enough examples
to train our language models, and we add to their
findings by measuring a relationship between form
and meaning, rather than form given meaning.

4.2 Embeddings
We use pre-trained WORD2VEC representations
as meaning vectors for the basic concepts.
For CELEX, specific representations were pre-
trained for each of the three languages.5 For
NorthEuraLex, as its words are concept aligned,
we use the same English vectors for all languages.
Pragmatically, we choose English because its vec-
tors have the largest coverage of the lexicon. This
does not mean that we assume that semantic spaces

4 We omit Mandarin; the absence of tone annotations
leaves its phonotactics greatly underspecified. All reported
results are for the remaining 106 languages.

5 We use Google’s WORD2VEC representations pre-trained
in Google News corpus for English, while WORD2VEC was
trained using Wikipedia dumps for German and Dutch with
default hyper-parameters.

across languages to be strictly comparable. In fact,
we would expect that more direct methods of es-
timating these vectors would be preferable if they
were practical.

Note that the methods described above are likely
underestimating the semantic systematicity in the
data, for a couple of reasons. First, WORD2VEC

and other related methods have been shown to do
a better job at capturing general relatedness rather
than semantic similarity per se (Hill et al., 2015).
Second, our use of the English vectors across the
concept-aligned corpora is a somewhat coarse ex-
pedient. To the extent that the English serves as
a poor model for the other languages, we should
expect smaller MI estimates. In short, we have
chosen easy-to-replicate methods based on com-
monly used models, rather than extensively tuning
our approach for these experiments, possibly at the
expense of the size of the effect we observe.

To reduce spurious fitting to noise in the dataset,
we reduce the dimensionality of these vectors from
the original 300 to d while capturing maximal vari-
ance, using principal components analysis (PCA).

These resulting d-dimensional vectors are kept
fixed while training the conditional language model.
Each d-dimensional vector v is linearly trans-
formed to serve as the initial hidden state of the
conditional LSTM language model:

h0 =W(v)v+b(v)

h j =LSTM(h j−1,z j) , j ∈ {1, . . . ,n+1}.

We reject morphologically informed embeddings
(e.g., Bojanowski et al., 2017) because this would
be circular: We cannot question the arbitrariness of
the form–meaning interface if the meaning repre-
sentations are constructed with explicit information
from the form. This is the same reason that we do
not fine-tune the embeddings—our goal is to en-
force as clean a separation as possible of model
and form, then suss out what is inextricable.

4.3 Controlling for grammatical category
The value of WORD2VEC comes from distilling
more than just meaning. It also encodes the gram-
matical classes of words. Unfortunately, this is a
trivial source of systematicity: if a language’s lem-
mata for some class follow a regular pattern (such
as the verbal infinitive endings in Romance lan-
guages), our model will have uncovered something
meaningless. Prior work—e.g., (Dautriche et al.,
2017; Gutierrez et al., 2016)—does not account for



this. To isolate factors like these, we can estimate
the mutual information between word form and
meaning, while conditioning on a third factor. The
expression is similar to Equation 5a:

I(W ;V |C)≡ H(W |C)−H(W |V,C), (9)

where C is our third factor—in this case, grammat-
ical class.6

Both CELEX and NorthEuraLex are annotated
with grammatical classes for each word. We
create a lookup embedding for each class in a
language, then use the resulting representation
as an initial hidden state to the LSTM (h0 = c).
When conditioning on both meaning and class,
we concatenate half-sized representations of the
meaning (pre-trained) and class to create the first
hidden state (h0 = [c′;W(v)v′+b(v)]).

4.4 Hypothesis testing

We follow Gutierrez et al. (2016) and Liu et al.
(2018) in using a permutation test to assess our
statistical significance. In it, we randomly swap
the sign of I values for each word, showing mu-
tual information is significantly positive. Our null
hypothesis, then, is that this value should be 0. Re-
computing the average mutual information over
many shufflings gives rise to an empirical p-value:
asymptotically, it will be twice the fraction of per-
mutations with a higher mutual information than
the true lexicon. In our case, we used 100,000
random permutations.

4.5 Hyperparameters and optimization

We split both datasets into ten folds, using one fold
for validation, another for testing, and the rest for
training. We optimize all hyper-parameters with 50
rounds of Bayesian optimization—this includes the
number of layers in the LSTM, its hidden size, the
PCA size d used to compress the meaning vectors,
and a dropout probability. Such an optimization is
important to get tighter bounds for the entropies,
as discussed in §3.4. We use a Gaussian process
prior and maximize the expected improvement on
the validation set, as in Snoek et al. (2012). 7

5 Results and Analysis

5.1 Identifying systematicity

We find statistically significant nonzero mutual in-
formation in all three CELEX languages (Dutch,
English, and German), using a permutation test to
establish significance. This gives us grounds to re-
ject the null hypothesis. We also find a statistically
significant mutual information when conditioning
entropies in words’ grammar classes. These results
are summarized in Table 1.

But how much could the mutual information
have been? A raw number of bits is not easily
interpretable, so we provide another information-
theoretic quantity, the uncertainty coefficient, ex-
pressing the fraction of bits we can predict given
the meaning: U(W |V ) = I(W ;V )

H(W ) .The mutual infor-
mation I(W ;V ) is upper-bounded by the language’s
entropy H(W ), so the uncertainty coefficient is be-
tween zero and one.8 For the CELEX data, we
give the uncertainty coefficients with and without
conditioning on part of speech in Table 1.

By comparing results with and without condi-
tioning on grammatical category, we see the im-
portance of controlling for known factors of sys-
tematicity. As expected, all systematicity (mutual
information) results are smaller when we condition
on part of speech. After conditioning, systematic-
ity remains present, though. In English, we can
guess about 3.25% of the bits encoding the phone
sequence, given the meaning. In Dutch and Ger-
man, these quantities are higher. The effect size of
systematicity in these languages, though, is small.

5.2 Broadly multilingual analysis

On the larger set of languages in NorthEuraLex,
we see that 87 of the 106 languages have statis-
tically significant systematicity (p < 0.05), after
Benjamini–Hochberg (1995) corrections. When
we control for grammatical classes (I(W ;V | POS)),
we still get significant systematicity across lan-
guages (p < 10−3). A per-language analysis,
though, only finds statistical significance for 17
of them, after Benjamini–Hochberg (1995) correc-
tions. This evinces the importance of conditioning
on grammatical category; without doing so, we
would find a spurious result due to crafted, mor-

6 If markers of subclasses within a given part of speech are
frequent, these may also emerge.

7 Our implementation is available at https://github.
com/tpimentelms/meaning2form.

8 Because of our estimation, it may be less than zero.

https://github.com/tpimentelms/meaning2form
https://github.com/tpimentelms/meaning2form


Systematicity Systematicity controlling for POS tags

Language H(W ) I(W ;V ) U(W |V ) Cohen’s d I(W ;V | POS) U(W |V ;POS) Cohen’s d

English 3.401 0.110 3.24% 0.175 0.084 2.50% 0.133
German 3.195 0.168 5.26% 0.221 0.154 4.84% 0.203
Dutch 3.245 0.156 4.82% 0.222 0.089 2.84% 0.123

Table 1: Mutual information (in bits per phone), uncertainty coefficients, and Cohen’s effect size results for CELEX.
Per-phone word–form entropy added for comparison. All mutual information values are statistically significant
(p < 10−5), as tested with a permutation test with 105 permutations.
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Figure 2: Mutual information and uncertainty coeffi-
cients for each language of NorthEuraLex.

phological systematicity. We present kernel density
estimates for these results in Figure 2 and give full
results in Appendix A. Across all languages, the av-
erage uncertainty coefficient was 1.37% (Cohen’s d
0.1936). When controlling for grammatical classes,
though, it was only 0.2% (Cohen’s d 0.0287).

There were only 970 concepts with correspond-
ing WORD2VEC representations in this dataset, and
our language models easily overfit when condi-
tioned on these. As we optimize the used number of
PCA components (d) for these word embeddings,
we can check its ‘optimum’ size. The average d
across NorthEuraLex languages was only ≈ 22,
while on CELEX it was ≈ 153. This might imply
that the model couldn’t find systematicity in some
languages due to the dataset’s small size—models
were too prone to overfitting.

5.3 Fantastic phonesthemes and where to
find them

As a phonestheme is, by definition, a sequence of
phones that suggest a particular meaning, we ex-
pect them to have higher mutual information values
when compared to other k-grams in the lexicon—

measured in bits per phone. To identify that a prefix
of length k, w≤k, is a phonestheme, we compare
it to all such prefixes, being interested in the mu-
tual information I(W≤k,V ). For each prefix in our
dataset, we compute the average mutual informa-
tion over all n words it appears in.We then sample
105 other sets of n words and get their average
mutual information. Each prefix is identified as a
phonestheme with a p-value of r

105 , where r is how
many comparison where it has a lower systematic-
ity than the random sets.9 Table 2 shows identified
phonesthemes for English, Dutch, and German.

Inspecting the German data, it is clear that some
of these prefixes and affixes that we find are fos-
silized pieces of derivational etymology. Further,
many of the endings in German are simply the verb
ending -/@n/ with an additional preceding phone.
Dutch and English are less patterned. While we
find few examples in Dutch, all are extremely sig-
nificant. It can be argued that two examples (-/@l/
and -/xt/) are not semantic markers but rather cate-
gorizing heads in the framework of distributed mor-
phology (Marantz and Halle, 1993)—suggestions
that the words are nouns. Further, in English,
we find other examples of fossilized morphology,
(/k@n/-) and (/In/-). In this sense, our found phon-
esthemes are related to another class of restricted-
application subword: bound morphemes (Bloom-
field, 1933; Aronoff, 1976; Spencer, 1991), which
carry known meaning and cannot occur alone.

From the list of English prefix phonesthemes we
present here, all but /In/- and /k@n/- find support in
the literature (Hutchins, 1998; Otis and Sagi, 2008;
Gutierrez et al., 2016; Liu et al., 2018). Further-
more, an interesting case is the suffix -/mp/, which
is identified with a high confidence. This might
be picking up on phonesthemes -/ump/ and -/amp/

9 While this explanation is specific to prefixes, we straight-
forwardly applied this to suffixes by reversing the word forms—
e.g. ‘banana’ 7→ ‘ananab’.



Language Phonestheme Count Examples p-value

Dutch /sx/- 110 schelp, schild, schot, shacht, schaar <0.00001
-/@l/ 124 kegel, nevel, beitel, vleugel, zetel <0.00001
-/xt/ 42 beicht, nacht, vocht, plicht, licht <0.00001
-/Op/ 21 stop, shop, drop, top, bob 0.00068

English /In/- 33 infidel, intellect, institute, enigma, interim <0.00001
/sl/- 59 slop, slough, sluice, slim, slush <0.00001
-/kt/ 36 aspect, object, fact, viaduct, tact 0.00001
-/m@/ 32 panorama, asthma, trachoma, eczema, magma 0.00002
-/mp/ 44 stump, cramp, pump, clamp, lump 0.00003
-/@m/ 62 millennium, amalgam, paroxysm, pogrom, jetsam 0.00007
/fl/- 64 flaw, flake, fluff, flail, flash 0.00009
/bV/- 35 bum, bunch, bunk, butt, buck 0.00013
-/Qp/ 23 hop, strop, plop, pop, flop 0.00032
/gl/- 28 gleam, gloom, glaze, glee, glum 0.00046
/sn/- 38 sneak, snide, snaffle, snout, snook 0.00077
-/n@/ 34 henna, savanna, fauna, alumna, angina 0.00102
-/æg/ 23 swag, shag, bag, mag, gag 0.00107
/sw/- 43 swamp, swoon, swish, swoop, swig 0.00112
/sI/- 78 silica, secede, silicone, secrete, cereal 0.00198
-/k@/ 22 japonica, yucca, mica, hookah, circa 0.00217
/sE/- 34 shell, sheriff, shelf, chevron, shed 0.00217
/k@n/- 31 conceal, condemn, concert, construe, continue 0.00429

German /g@/- 69 geschehen, Gebiet, gering, Geruecht, gesinnt <0.00001
-/@ln/ 58 rascheln, rumpeln, tummeln, torkeln, mogeln <0.00001
-/ln/ 58 rascheln, rumpeln, tummeln, torkeln, mogeln <0.00001
-/@n/ 801 goennen, saeen, besuchen, giessen, streiten <0.00001
/In/- 34 Indiz, indes, intern, innehaben, innerhalb <0.00001
/b@/- 32 bestaetigen, beweisen, bewerkstelligen, betrachten, beschwichtigen <0.00001
-/p@/ 36 Lampe, Klappe, Kappe, Raupe, Wespe 0.00002
-/S@n/ 24 dreschen, wischen, mischen, rauschen, lutschen 0.00002
/Sl/- 39 schlagen, schlingen, schleifen, schleudern, schluepfen 0.00015
-/k@n/ 76 backen, strecken, spucken, druecken, schmecken 0.00016
-/ts@n/ 47 blitzen, schwatzen, duzen, stanzen, einschmelzen 0.00026
-/l@n/ 41 quellen, prellen, johlen, bruellen, eilen 0.00029
/ain/- 25 einstehen, eintreiben, einmuenden, einfinden, eingedenk 0.00033
-/Ix/ 59 reich, weich, bleich, gleich, Laich 0.00033
/Sn/- 22 schnitzen, schnalzen, schnappen, schnurren, schneiden 0.00036
/Sm/- 23 schmieren, schmieden, schmunzeln, schmoren, schmeissen 0.00077
/Sv/- 38 schweben, schweifen, schwirren, schwellen, schwimmen 0.00124
-/r@n/ 62 servieren, wehren, sparen, kapieren, hantieren 0.00247
/br/- 35 brausen, bremsen, brechen, brennen, brauen 0.00258
-/t@/ 86 Paste, Quote, Kette, vierte, Sorte 0.00281
-/n@/ 66 Traene, Tonne, Laterne, Fahne, Spinne 0.00354
-/@rn/ 70 schillern, schimmern, kapern, knattern, rattern 0.00365

Table 2: Discovered phonesthemes, represented as IPA, in Dutch, English, and German, sorted p-values according
to the Benjamini–Hochberg (1995) correction. Count refers to the number of types in our corpus with that affix.



from Hutchins (1998)’s list.

5.4 Correlation with human judgments

As a final, albeit weak, validation of our model,
we consider how well our computed systematicity
compares to human judgments (Hutchins, 1998;
Gutierrez et al., 2016; Liu et al., 2018). We turn
to the survey data of Liu et al. (2018), in which
workers on Amazon Mechanical Turk gave a 1-to-
5 judgment of how well a word’s form suited its
meaning. For each of their model’s top 15 predicted
phonesthemes and 15 random non-predicted phon-
esthemes, the authors chose five words containing
the prefix for workers to evaluate.10 Comparing
these judgments to our model-computed estimates
of mutual information I(W<2;V ), we find a weak,
positive Spearman’s rank correlation (ρ = 0.352
with p = 0.03). This shows that prefixes for which
we find higher systematicity—according to mu-
tual information—also tend to have higher human-
judged systematicity.

6 Conclusion

We have revisited the linguistic question of the
arbitrariness—and the systematicity—of the sign.
We have framed the question on information-
theoretic grounds, estimating entropies by state-of-
the-art neural language modeling. We find evidence
in 87 of 106 languages for a significant systematic
pattern between form and meaning, reducing ap-
proximately 5% of the phone-sequence uncertainty
of German lexicons and 2.5% in English and Dutch,
when controlling for part of speech.

We have identified meaningful phonesthemes
according to our operationalization, and we have
good precision—all but two of our English phon-
esthemes are attested in prior work. An avenue for
future work is connecting our discovered phones-
themes to putative meanings, as done by Abramova
et al. (2013) and Abramova and Fernández (2016).

The low uncertainty reduction suggests that the
lexicon is still largely arbitrary. According to the
information-theoretic perspective of Monaghan
et al. (2011), an optimal lexicon has an arbitrary
mapping between form and meaning. If this is true,
then a large amount of these benefits do accrue
to language; that is, given the small degree of
systematicity, we lose little of the benefit.

10 Of the 150 judgements in their dataset, only 35 were in
ours as well, so we restrict our analysis to them. This is a
weak signal for our model’s validity.
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A NorthEuraLex Results

Language H(W ) U(W |V ) U(W |V ;POS)

abk 2.8432 1.76% -0.26%
ady 3.2988 2.00% 0.50%
ain 3.0135 0.54% -0.50%
ale 2.5990 1.38% 0.47%
arb 3.0872 1.74% -0.07%
ava 2.8161 2.55% -0.22%
azj 3.0713 1.68% 1.42%
bak 3.0652 2.17% 0.44%
bel 3.1212 1.48% -0.37%
ben 3.2638 1.69% 0.65%
bre 3.1430 0.57% 1.43%
bsk 3.4114 0.17% 0.10%
bua 2.8739 1.94% 0.02%
bul 3.2150 1.63% 0.19%
cat 3.1536 1.75% 0.11%
ces 3.1182 1.74% 0.19%
che 3.2381 -1.60% 0.62%
chv 3.1185 0.43% 0.91%
ckt 2.8968 1.60% 0.47%
cym 3.2752 1.42% 0.86%
dan 3.2458 0.66% 0.57%
dar 3.2124 1.93% -0.37%
ddo 3.2711 2.15% -0.04%
deu 2.9596 1.27% 0.90%
ekk 2.9575 0.69% -1.55%
ell 2.9141 0.15% 0.89%
enf 3.0470 3.03% 0.80%
eng 3.2126 0.88% 0.70%
ess 2.7369 1.42% 0.29%
eus 3.0070 0.71% -0.57%
evn 2.8434 1.34% 0.64%
fin 2.8996 1.32% 0.23%
fra 3.3423 1.17% -0.32%
gld 2.9055 2.31% 0.26%
gle 3.1450 0.51% -0.36%
heb 3.1407 1.26% 0.79%
hin 3.0240 1.11% 0.68%
hrv 3.0776 2.04% 0.43%
hun 3.2520 0.44% 0.09%
hye 3.3416 1.84% 0.38%
isl 3.0386 0.50% -0.71%
ita 2.8409 2.18% 0.57%
itl 3.4332 1.96% 0.27%
jpn 2.8157 1.72% 0.53%
kal 2.5255 1.34% 0.02%

Language H(W ) U(W |V ) U(W |V ;POS)

kan 2.8412 0.23% 0.40%
kat 3.1831 2.04% 1.06%
kaz 3.0815 2.19% -0.13%
kca 2.8779 2.93% 1.40%
ket 3.3202 0.72% 0.30%
khk 2.9746 0.57% 0.45%
kmr 3.1292 2.22% 0.26%
koi 3.2419 0.57% 0.25%
kor 3.1600 1.66% 0.40%
kpv 3.1685 1.71% 0.48%
krl 2.8655 2.19% -0.71%
lat 2.8102 1.36% 0.01%
lav 2.8679 0.60% -0.10%
lbe 3.0239 0.94% -0.41%
lez 3.3717 3.34% 0.24%
lit 2.8086 1.45% -1.33%
liv 3.0825 1.11% -1.34%
mal 2.6773 1.90% 0.38%
mdf 2.9186 1.24% -0.07%
mhr 2.9952 1.08% 1.20%
mnc 2.5750 3.05% -0.03%
mns 2.8001 1.03% 0.18%
mrj 3.1771 1.74% 0.49%
myv 2.8785 1.61% 0.75%
nio 2.8985 1.96% 1.46%
niv 3.4408 1.46% 0.45%
nld 3.0407 1.56% -0.40%
nor 3.0315 0.68% 0.21%
olo 3.0151 1.38% 0.49%
oss 3.2484 1.42% -0.45%
pbu 3.2840 1.58% -0.05%
pes 2.8443 1.63% -0.17%
pol 3.3167 1.65% 0.27%
por 3.2509 1.19% 0.10%
ron 3.3667 0.43% -0.99%
rus 3.3538 1.88% 0.17%
sah 3.0002 -1.29% -0.37%
sel 2.8460 1.86% 0.76%
sjd 2.7920 -0.05% 0.30%
slk 3.1928 1.27% 0.46%
slv 2.8685 2.13% -0.40%
sma 2.5011 2.02% -0.14%
sme 2.6746 2.10% -0.17%
smj 2.5975 0.86% -0.52%
smn 2.9281 1.50% 0.22%
sms 2.7608 1.06% -0.56%



Language H(W ) U(W |V ) U(W |V ;POS)

spa 2.9777 1.91% 2.07%
sqi 3.3473 0.22% 0.69%
swe 2.8600 0.64% -0.44%
tam 2.6851 -0.19% -0.63%
tat 3.1365 1.50% 0.17%
tel 2.8458 0.06% -1.34%
tur 2.9646 1.93% 0.81%
udm 3.1042 2.72% 0.37%
ukr 3.1135 1.46% 0.48%
uzn 3.0624 1.26% 0.13%
vep 3.2055 2.53% 1.21%
xal 3.2090 1.50% 0.51%
ykg 2.9680 1.79% 0.65%
yrk 2.8453 1.97% 0.49%
yux 3.0704 -0.29% -0.18%

Table 3: NorthEuraLex languages and p-values of sys-
tematicity. Bold entries are statistically significant at
p< 0.05, after Benjamini–Hochberg (1995) correction.

Language H(W ) U(W ;V ) U(W ;V | POS)

abk 2.8432 0.0500 -0.0071
ady 3.2988 0.0661 0.0158
ain 3.0135 0.0161 -0.0150
ale 2.5990 0.0358 0.0117
arb 3.0872 0.0538 -0.0020
ava 2.8161 0.0717 -0.0059
azj 3.0713 0.0517 0.0429
bak 3.0652 0.0666 0.0130
bel 3.1212 0.0462 -0.0110
ben 3.2638 0.0553 0.0206
bre 3.1430 0.0181 0.0444
bsk 3.4114 0.0057 0.0034
bua 2.8739 0.0558 0.0007
bul 3.2150 0.0523 0.0060
cat 3.1536 0.0550 0.0032
ces 3.1182 0.0543 0.0055
che 3.2381 -0.0519 0.0194
chv 3.1185 0.0135 0.0282
ckt 2.8968 0.0464 0.0131
cym 3.2752 0.0464 0.0275
dan 3.2458 0.0214 0.0183
dar 3.2124 0.0621 -0.0114
ddo 3.2711 0.0702 -0.0013
deu 2.9596 0.0377 0.0261
ekk 2.9575 0.0203 -0.0438
ell 2.9141 0.0044 0.0252
enf 3.0470 0.0923 0.0233

Language H(W ) U(W ;V ) U(W ;V | POS)

eng 3.2126 0.0284 0.0226
ess 2.7369 0.0388 0.0076
eus 3.0070 0.0214 -0.0166
evn 2.8434 0.0382 0.0175
fin 2.8996 0.0384 0.0063
fra 3.3423 0.0392 -0.0104
gld 2.9055 0.0670 0.0073
gle 3.1450 0.0161 -0.0111
heb 3.1407 0.0396 0.0243
hin 3.0240 0.0336 0.0200
hrv 3.0776 0.0627 0.0127
hun 3.2520 0.0143 0.0029
hye 3.3416 0.0615 0.0125
isl 3.0386 0.0153 -0.0208
ita 2.8409 0.0618 0.0153
itl 3.4332 0.0674 0.0090
jpn 2.8157 0.0485 0.0141
kal 2.5255 0.0340 0.0005
kan 2.8412 0.0066 0.0111
kat 3.1831 0.0649 0.0325
kaz 3.0815 0.0676 -0.0039
kca 2.8779 0.0843 0.0387
ket 3.3202 0.0240 0.0100
khk 2.9746 0.0170 0.0128
kmr 3.1292 0.0694 0.0078
koi 3.2419 0.0185 0.0077
kor 3.1600 0.0524 0.0122
kpv 3.1685 0.0542 0.0148
krl 2.8655 0.0629 -0.0195
lat 2.8102 0.0381 0.0002
lav 2.8679 0.0172 -0.0027
lbe 3.0239 0.0285 -0.0119
lez 3.3717 0.1126 0.0077
lit 2.8086 0.0409 -0.0354
liv 3.0825 0.0342 -0.0401
mal 2.6773 0.0508 0.0097
mdf 2.9186 0.0363 -0.0021
mhr 2.9952 0.0325 0.0348
mnc 2.5750 0.0785 -0.0006
mns 2.8001 0.0289 0.0048
mrj 3.1771 0.0552 0.0151
myv 2.8785 0.0463 0.0208
nio 2.8985 0.0569 0.0408
niv 3.4408 0.0504 0.0147
nld 3.0407 0.0474 -0.0118
nor 3.0315 0.0206 0.0061



Language H(W ) U(W ;V ) U(W ;V | POS)

olo 3.0151 0.0415 0.0143
oss 3.2484 0.0460 -0.0140
pbu 3.2840 0.0518 -0.0017
pes 2.8443 0.0463 -0.0046
pol 3.3167 0.0547 0.0086
por 3.2509 0.0387 0.0031
ron 3.3667 0.0144 -0.0322
rus 3.3538 0.0631 0.0056
sah 3.0002 -0.0388 -0.0111
sel 2.8460 0.0528 0.0207
sjd 2.7920 -0.0013 0.0082
slk 3.1928 0.0406 0.0139
slv 2.8685 0.0611 -0.0111
sma 2.5011 0.0505 -0.0033
sme 2.6746 0.0562 -0.0043
smj 2.5975 0.0223 -0.0129
smn 2.9281 0.0439 0.0061
sms 2.7608 0.0292 -0.0149
spa 2.9777 0.0568 0.0599
sqi 3.3473 0.0073 0.0226
swe 2.8600 0.0182 -0.0124
tam 2.6851 -0.0050 -0.0167
tat 3.1365 0.0471 0.0050
tel 2.8458 0.0017 -0.0374
tur 2.9646 0.0574 0.0234
udm 3.1042 0.0843 0.0110
ukr 3.1135 0.0456 0.0142
uzn 3.0624 0.0386 0.0039
vep 3.2055 0.0812 0.0374
xal 3.2090 0.0482 0.0156
ykg 2.9680 0.0532 0.0186
yrk 2.8453 0.0561 0.0133
yux 3.0704 -0.0088 -0.0054

Table 4: NorthEuraLex languages and their uncertainty
coefficients. Bold entries are statistically significant at
p< 0.05, after Benjamini–Hochberg (1995) correction.


