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Abstract

Beam search is the default decoding strategy
for many sequence generation tasks in NLP.
The set of approximate K-best items returned
by the algorithm is a useful summary of the
distribution for many applications; however,
the candidates typically exhibit high overlap
and may give a highly biased estimate for ex-
pectations under our model. These problems
can be addressed by instead using stochastic
decoding strategies. In this work, we propose
a new method for turning beam search into
a stochastic process: Conditional Poisson
stochastic beam search. Rather than taking the
maximizing set at each iteration, we sampleK
candidates without replacement according to
the conditional Poisson sampling design. We
view this as a more natural alternative to Kool
et al. (2019)’s stochastic beam search (SBS).
Furthermore, we show how samples generated
under the CPSBS design can be used to build
consistent estimators and sample diverse sets
from sequence models. In our experiments, we
observe CPSBS produces lower variance and
more efficient estimators than SBS, even show-
ing improvements in high entropy settings.1

1 Introduction

Many NLP tasks require the prediction of struc-
tured outputs, such as sentences or parse trees,
either during decoding or as part of a training
algorithm. For today’s neural architectures, beam
search (Reddy, 1977) has become the decoding
algorithm of choice due to its efficiency and empiri-
cal performance (Serban et al., 2017; Edunov et al.,
2018; Yang et al., 2019; Meister et al., 2020b).
Beam search is a deterministic method, which
invites a natural question: What is the proper
stochastic generalization of beam search? Several
recent papers have investigated this question (Kool
et al., 2019, 2020; Shi et al., 2020). Here we build
1Our codebase is publically available at https://github.
com/rycolab/cpsbs.

Operator
Set Size

K = 1 K > 1

argmax Greedy Search Beam Search

Ancestral Conditional
sample

Sampling Poisson Beams

Table 1: A comparison of beam-based decoding algo-
rithms for sequence models, by solution set size and
objective. The argmax and sample variants are related
through annealing: As the annealing parameter of the
distribution τ → 0, sampling turns into computing an
argmax (see §3).

on this line of work and introduce an alternative
stochastic beam search that the authors contend is
a more faithful stochasticization of the original al-
gorithm in that it recovers standard beam search as
a special case. We name our algorithm conditional
Poisson stochastic beam search (CPSBS) as we
draw on the conditional Poisson sampling scheme
(Hájek, 1964) in its construction. The relationship
between CPSBS and other common decoding
strategies is displayed visually in Table 1.

At every iteration, CPSBS replaces the top-K
operator in the beam search algorithm with
conditional Poisson sampling, resulting in a
decoding strategy that generates samples-without-
replacement. Importantly, annealing our sampling
distribution at each time step turns local sampling
into a local top-K computation and thereby
recovers beam search. We subsequently show
that these samples can be used to construct a
statistically consistent estimator for the expected
value of an arbitrary function of the output.

In our experiments with neural machine transla-
tion models, we observe that CPSBS leads to better
estimates of expected BLEU and conditional model
entropy than SBS and the sum-and-sample estima-
tor (Kool et al., 2020), distinctly outperforming
Monte Carlo sampling for both small sample sizes
and low temperatures. Furthermore, we find that
CPSBS can be used as a diverse sampling strategy.
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We take these results as confirmation that CPSBS
is a useful tool in the newfound arsenal of sampling
strategies for neural sequence models.

2 Beam Search

In this section, we overview the necessary back-
ground on neural sequence models and beam search
in order to motivate our algorithm in §3.

Neural Sequence Models. We consider locally
normalized probabilistic models over sequences y:

p(y) =

|y|∏
t=1

p(yt | y<t) (1)

where y is a member of a set of well-formed
outputs Y . In the context of language generation
models, well-formed outputs are sequences of
tokens y = 〈y1, y2, . . . 〉 from a vocabulary V ; all
y ∈ Y begin and end with special tokens BOS and
EOS, respectively. We use y<t to represent the sub-
sequence 〈y1, . . . , yt−1〉. In this work, we consider
the setting where the maximum sequence length is
upper-bounded; we denote this upper bound T > 0.
Without loss of generality, we may condition p on
an input x, as is necessary for machine translation
and other conditional generation tasks.

Beam Search. Beam search is a commonly used
search heuristic for finding an approximate solution
to the following optimization problem:

y? = argmax
y∈Y

log p(y) (2)

Its most straightforward interpretation is as a
pruned version of breadth-first search, where the
breadth of the search is narrowed to the top-K
candidates. However, here we will present beam
search in a nonstandard lens (Meister et al., 2020a,
2021) in order to emphasize the connection with
our stochastic generalization in §3. Specifically,
we present the algorithm as iteratively finding the
highest-scoring set under a specific set function.

Under this paradigm, the initial beam Y0 con-
tains only the BOS token. At subsequent steps
t = 1, . . . , T , beam search selects the K highest-
scoring candidates from the set Yt−1 ◦ V that we
define below:2

Yt−1 ◦ V
def
= {y ◦ y | y ∈ Yt−1 and y ∈ V } (3)

2Sequences already ending in EOS are not extended by y ∈ V
and are simply added to the set “as is.”

where ◦ is sequence concatenation. Those candi-
date sets with collectively higher probability under
the model p have higher score. This process con-
tinues until all y ∈ Yt end in EOS, or t = T . For
notational ease, we define Bt

def
= Yt−1 ◦V ; through-

out this paper, we will assume |Bt| = N and
identify the elements of Bt = {y(1)

≤t , . . . ,y
(N)
≤t }

with the integers {1, . . . , N}.
We can formulate the time-step dependent set

function whose argmax beam search finds as

Qt(Yt | Yt−1)
def∝

{∏N
n=1wn if |Y |=K

0 otherwise
(4)

wherewn is the weight of the nth element ofBt. To
recover beam search, we set our weights equal to
probabilities under a model p i.e. wn = p

(
y
(n)
≤t

)
.

Note that we leave the constraint that Y ⊆ Bt im-
plicit in Eq. (4). As should be clear from notation,
this set function only assigns positive scores to sub-
sets of Yt−1 ◦V of size exactly K and the assigned
score is proportional to the product of the proba-
bility of the candidates under the model p. Putting
this all together, beam search may be viewed as the
following iterative process:

Y0 = {BOS} (5)

Yt = argmax
Y ′t⊆Bt

Qt(Y
′
t | Yt−1) (6)

return YT (7)

3 Conditional Poisson Stochastic Beams

Our paper capitalizes on a very simple observation:
Rather than taking its argmax, we may renormal-
ize Eq. (4) into a distribution and sample-without-
replacement a size K set at each iteration:

Y0 = {BOS} (8)

Yt ∼ Qt(· | Yt−1) (9)

return YT (10)

This recursion corresponds to performing condi-
tional Poisson sampling (CPS; Hájek 1964;see
App. A for overview), a common sampling-without-
replacement design (Tillé, 2006),3 at every time
step. Thus we term this scheme conditional Pois-
son stochastic beam search. CPSBS gives us a
3A sampling design is a probability distribution over sets of
samples.



probability distribution over sets of candidates of
size K, i.e., the final beam YT . We denote the
CPSBS distribution P and we write YT ∼ P to
indicate that YT is the stochastic beam at the end of
a sampling run. We may write P (YT ) as a marginal
probability, summing over all sequences of beams
that could have resulted in YT :4

P (YT ) =
∑
Y1

· · ·
∑
YT−1

T∏
t=1

Qt(Yt | Yt−1) (11)

Note the structural zeros of Qt prevent any
incompatible sequence of beams. We provide a
theoretical analysis of the scheme in §4 and an
empirical analysis in §5.

Normalizing Qt(· | Yt−1). At each time step
t, we compute Qt(· | Yt−1)—a distribution over
subsets of size K of a base set Bt—using the
CPS design. The normalizing constant for this
distribution is defined as

Zt
def
=
∑

Yt⊆Bt,
|Yt|=K

N∏
n=1

wn (12)

Despite there being exponentially many summands,
we can sum over all

(
N
K

)
subsets in O(NK) time

via the following recurrence relation:5

W

(
n

k

)
=


1

if k = 0
or n = k

W
(
n−1
k

)
+ wnW

(
n−1
k−1
)

if k ∈ (0, n)

0 otherwise

We give complete pseudocode in App. C. Correct-
ness of this algorithm is shown in Kulesza and
Taskar (2012). The normalizing constant can then
be efficiently computed as

Zt = W

(
N

K

)
(13)

Sampling from Qt(· | Yt−1). We can efficiently
sample sets from Qt(· | Yt−1) using the algorithm
below:

1: Yt ← ∅ . Initialization

2: for n = N . . . 1 :
3: k ← K − |Yt| . Number of remaining elements

4This formulation reveals that it is wildly intractable to com-
pute P (YT ).

5The reader may recognize this recurrence as the weighted
generalization of Pascal’s triangle,

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
,

which is why we chose the notation W
(
n
k

)
.

4: Add the nth element of Bt to Yt with prob.

wnW
(
n−1
k−1
)

W
(
n
k

)
5: return Yt . Guaranteed to have size K

In words, the algorithm considers adding each el-
ement one at a time until K elements have been
sampled. Notice that line 4 adjusts the probability
of sampling item n given that |Yt| items have al-
ready been sampled, which ensures that exactly K
elements are sampled at termination.

Setting wn. The weight assigned to the nth

item of Bt directly affects its probability of being
included in the sampled set, i.e., Pr

(
y
(n)
≤t ∈ Yt

)
,

also termed an item’s inclusion probability. In
this paper, we write πQt

(
y
(n)
≤t | Yt−1

)
to denote

the inclusion probability under the distribution
Qt(· | Yt−1), defined as:

πQt

(
y
(n)
≤t | Yt−1

)
(14)

def
=
∑
Yt

Qt(Yt | Yt−1)1{y(n)
≤t ∈ Yt}

One strategy is to choose wn at time step t such
that πQt

(
y
(n)
≤t | Yt−1

)
≈ p(y

(n)
≤t ). This choice

recovers beam search when we anneal our chosen
weights wn 7→ w

1/τ
n : as the temperature parameter

τ → 0, the CP distribution will assign probability
1 to the set containing the top-K elements.6

Finding wn’s that result in pre-specified inclu-
sion probabilities is possible, but it requires solv-
ing a numerical optimization problem (Aires, 1999;
Grafström, 2009). Further, in CPSBS, we will be
sampling from a different distribution at each time
step and it would be quite slow to solve the numer-
ical optimization problem each iteration. Luckily,
the choice of wn = p(y

(n)
≤t )/(1 − p(y

(n)
≤t )) yields

a good approximation to the target inclusion prob-
abilities in both theory and practice (Hájek, 1981;
Bondesson et al., 2006; Aires, 1999).

4 Statistical Estimation with Conditional
Poisson Stochastic Beam Search

In this section, we discuss statistical estimation
with CPSBS samples. To that end, we construct
two estimators with different properties. However,

6In the event of ties, annealed CP will converge to a distribu-
tion that breaks ties uniformly at random.



only the second estimator provides good perfor-
mance in practice, which is discussed later in §5.

4.1 The Horvitz–Thompson Estimator

We build upon the Horvitz–Thompson (HT) esti-
mator (Horvitz and Thompson, 1952), which is a
common technique for estimation from sampling-
without-replacement (SWOR) schemes.

Let be f : Y → Rd, we seek to approximate its
expected value under p:

Ey∼p [f(y)] =
∑
y∈Y

p(y)f(y) (15)

The Monte Carlo estimator of the above quantity is

GMC
def
=

1

M

M∑
m=1

f(y(m)) (16)

where y(m) i.i.d.∼ p. However, in the special case
of sampling from a finite population—which
is extremely common in NLP—it can be very
wasteful. For example, if a distribution is very
peaked, it will sample the same item repeatedly;
this could lead to inaccurate approximations for
some f . As a consequence, the mean square error
(MSE) of the estimator with respect to Ey∼p [f(y)]
can be quite high for small M . Indeed, we see this
empirically in §5.1.

Taking samples without replacement allows us
to cover more of the support of p in our estimate of
Ey∼p [f(y)]. However, we must take into account
that our samples are no longer independent, i.e.,
y 6∼ p. We now define the HT estimator, using
notation specifically for the case of CPSBS where
YT ∼ P :

GHT
def
=
∑
y∈YT

p(y)

πP (y)
f(y) (17)

where CPSBS’s inclusion probability is

πP (y) =
∑
YT

P (YT )1{y ∈ YT } (18)

=
∑
Y1

· · ·
∑
YT

T∏
t=1

Qt(Yt | Yt−1)1 {y≤t ∈ Yt}

i.e., the probability of sampling a set YT ∼ P that
contains the element y. In Eq. (17), the distribution
πP may be viewed as a proposal distribution in the
sense of importance sampling (Owen, 2013) and
1/πP (y) as the corresponding importance weight
corrections. If we can exactly compute πP , then

the HT estimator is unbiased7 (see App. B.1 for
proof). However, the summation in Eq. (18) is
intractable so we resort to estimation.

4.2 Estimating Inclusion Probabilities

In this section, we develop statistical estimators of
the inclusion probabilities under conditional Pois-
son stochastic beam search. An important caveat:
the analysis in this section only applies to the esti-
mators of the inverse inclusion probabilities them-
selves. Further analysis may be undertaken to ana-
lyze the variance of the Horvitz–Thompson estima-
tors that make use of these estimators.

4.2.1 Naı̈ve Monte Carlo
It is not straightforward to estimate the reciprocal
inclusion probabilities. Thus, we attempt to esti-
mate the inclusion probabilities directly and take
the reciprocal of this estimator. This strategy leads
to a consistent, but biased, estimator.8 One obvious
way to derive an inclusion probability estimator is
the Monte Carlo estimator:

π̂MC

P (y)
def
=

1

M

M∑
m=1

1

{
y ∈ Y (m)

T

}
(19)

where Y (m) ∼ P .

Proposition 4.1. Eq. 19 has the following two
properties:

i) π̂MC

P is an unbiased estimator of πP and

V [π̂MC

P ] =
1

M

(
πP (y)− πP (y)2

)
(20)

ii) 1/π̂MC

P is a consistent estimator of 1/πP with
asymptotic variance

Va

[
1

π̂MC
P (y)

]
=

1

M

(
1

πP (y)3
− 1

πP (y)2

)
(21)

Here Va denotes the asymptotic variance, which
is the variance after the number of samples M is
large enough such that the central limit theorem
has kicked in (Bickel and Docksum, 2015).

Proof. Proof given in App. B.2. �

7Note that it is common to normalize Eq. (17) by the
sum of importance weights, i.e., divide GHT by the sum∑

y∈ỸT
πQt(y). While this leads to a biased estimator, it

can significantly reduce variance, which is often worthwhile.
8Since by Jensen’s inequality E [1/X] ≥ 1/E [X] for

X ∈ R+, the reciprocal of an unbiased estimate of πP (y)
is not an unbiased estimate of 1/πP (y)



Qualitatively, what this result tells us is that if we
are asking about the inverse inclusion probability
of a candidate with a low inclusion probability, our
estimator may have very high variance. Indeed, it is
unlikely that we could derive an estimator without
this qualitative property due to the presence of the
inverse. Moreover, the estimator given in Eq. (19)
is not of practical use: If we are interested in the
inverse inclusion probability of a specific candidate
y, then we may have to sample a very large number
of beams until we eventually sample one that actu-
ally contains y. In practice, what this means is that
our estimate of the inclusion probably for a rare y
will often be zero, which we cannot invert.9 Instead,
we pursue an importance sampling strategy for esti-
mating πP (y), which we outline in the next section.

4.2.2 Importance Sampling
We now turn to an inclusion probability estimator
that is based on importance sampling. Recall from
Eq. (18) that the inclusion probability for y is a
massive summation over sequences of possible
beams Y1, . . . , YT that could have generated y.
Rather than computing the sum, we will estimate
the sum through taking samples. Our procedure
starts by generating hindsight samples Ỹ1, . . . , ỸT
from the following proposal distribution that is
conditioned on y:

Q̃t(Ỹt | Ỹt−1,y)
def
=

Qt(Ỹt | Ỹt−1)
πQt(y≤t | Ỹt−1)

(22)

In words, Q̃t is Qt conditioned on its sets Yt
containing the prefix y≤t (thus it is always the case
that y≤t ∈ Ỹt).10 For brevity, we omit an explicit
notational dependence of Ỹ and Q̃t on y.

Lemma 4.1. The joint proposal distribution11

P̃ (Ỹ1, . . . , ỸT )
def
=
∏T
t=1 Q̃t(Ỹt | Ỹt−1) may be ex-

pressed in terms of P as follows:

P̃ (Ỹ1, . . . , ỸT ) =
P (Ỹ1, . . . , ỸT )∏T
t=1 πQt(y≤t | Ỹt−1)

(23)

where we define P (Ỹ1, . . . , ỸT )
def
=
∏T
t=1Qt(Ỹt |

Ỹt−1) as the joint probability of the beams under
9One solution would be to smooth our estimates of the inclu-
sion probabilities, adding a small ε to ensure that we do not
divide by zero, but the authors find our next approach to be
more methodologically sound.

10This proposal distribution can be realized through a
minor modification of our algorithm in §3, where w(y)
corresponding to y

(n)
≤t is placed at the beginning and added

to Yt deterministically.
11We have omitted dependency on y for brevity.

the original distributions Qt. We omit that both P
and P̃ are conditioned on Y0.

Proof. See App. B.2. �

In terms of computation, Eq. (22) makes use of
the fact that the per-time-step inclusion probability
πQt(y≤t) for a givenQt can be computed efficiently
with dynamic programming using the following
identity:

πQt(y
(n)
≤t | Yt−1)

def
=
∑
Y

Qt(Yt)1
{
y
(n)
≤t ∈ Yt

}
=
wn
Z

∂Z

∂wn
(24)

For completeness, we give pseudocode in App. C.
Given samples Ỹ (m)

T ∼ P̃ for P̃ defined in Eq. (22)
with respect to a given y, we propose the following
unbiased estimator of inclusion probabilities:

π̂ IS

P (y)
def
=

1

M

M∑
m=1

T∏
t=1

πQt(y≤t | Ỹ
(m)
t−1 ) (25)

where y≤t is a prefix of y. One simple derivation
of Eq. (25) is as an importance sampler. We start
with the estimator given in Eq. (19) and perform
the standard algebraic manipulations witnessed in
importance sampling:∑
YT

P (YT )1{y ∈ YT } (26)

=
∑
YT

· · ·
∑
Y1

P (Y1, . . . , YT )1{y ∈ YT }

=
∑
ỸT

· · ·
∑
Ỹ1

P (Ỹ1, . . . , ỸT )
P̃ (Ỹ1, . . . , ỸT )

P̃ (Ỹ1, . . . , ỸT )

=
∑
ỸT

· · ·
∑
Ỹ1

P̃ (Ỹ1, . . . , ỸT )
P (Ỹ1, . . . , ỸT )

P̃ (Ỹ1, . . . , ỸT )

(i)
=
∑
ỸT

· · ·
∑
Ỹ1

P̃ (Ỹ1, . . . , ỸT )

T∏
t=1

πQt(y≤t | Ỹt−1)

where equality (i) above follows from Lemma 4.1.
This derivation serves as a simple proof that
Eq. (25) inherits unbiasedness from Eq. (19)

Proposition 4.2. Eq. (25) has the following two
properties:

i) π̂ IS

P is an unbiased estimator of πP ;

ii) The estimator of the inverse inclusion proba-
bilities 1/π̂ IS

P (y) is consistent with the follow-
ing upper bound on the asymptotic variance:



Va

[
1

π̂ IS
P (y)

]
≤ 1

M

r − 1

πP (y)2
(27)

where we assume that the following bound:∏T
t=1 πQt(y≤t | Ỹt−1)

πP (y)
≤ r (28)

holds for all Ỹ1, . . . , ỸT .

Proof. Proof given in App. B.2. �

Proposition 4.2 tells us that we can use Eq. (25)
to construct a consistent estimator of the inverse
inclusion probabilities. Moreover, assuming
Pr (y∈YT ) > 0, then we have that the importance
sampling yields an estimate π̂ IS

P (y) > 0, unlike
the Monte Carlo estimator π̂MC

P (y). We further
see that, to the extent that

∏T
t=1 πQt(y≤t | Ỹt−1)

approximates πP (y), then we may expect the
variance of Eq. (25) to be small—specifically in
comparison to the naı̈ve Monte Carlo estimator in
Eq. (19)—which is often the case for estimators
built using importance sampling techniques when
a proposal distribution is chosen judiciously
(Rubinstein and Kroese, 2016). Thus, given our
estimator in Eq. (25), we can now construct a
practically useful estimator for Ey∼p [f(y)] using
the HT estimator in Eq. (17). In the next section,
we observe that this estimator is quite efficient in
the sequence model setting.

5 Experiments

We repeat the analyses performed by Kool et al.
(2019), running experiments on neural machine
translation (NMT) models; for reproducibility, we
use the pretrained Transformer model for WMT’14
(Bojar et al., 2014) English–French made available
by fairseq12 (Ott et al., 2019). We evaluate on
the En-Fr newstest2014 set, containing 3003
sentences. Further details can be found in App. D.
Our implementation of CPSBS modifies the beam
search algorithm from the fairseq library. We
additionally consider the beam search, stochastic
beam search, diverse beam search, and ancestral
sampling algorithms available in fairseq.

12https://github.com/pytorch/fairseq/tree/master/
examples/translation

5.1 Statistical Estimators for Language
Generation Models

Estimators have a large number of applications
in machine learning. For example, the REIN-
FORCE algorithm (Williams, 1992) constructs
an estimator for the value of the score function;
minimum-Bayes risk decoding (Kumar and Byrne,
2004) uses an estimate of risk in its optimization
problem. In this section, we compare estimators for
sentence-level BLEU score and conditional model
entropy for NMT models. Notably, NMT models
that are trained to minimize cross-entropy with the
empirical distribution13 are not peaky distributions
(Ott et al., 2018a; Eikema and Aziz, 2020); thus,
standard estimation techniques, e.g., Monte Carlo,
should generally provide good results. However,
we can vary the annealing parameter of our model
in order to observe the behavior of our estimator
with both high- and low-entropy distributions,
making this a comprehensive case study. Here the
annealed model distribution is computed as

pτ (yt | y<t) ∝ p (yt | y<t)
1
τ (29)

where we should expect a standard Monte Carlo
estimator to provide good results at τ close to
1 when p is naturally high entropy. We test our
estimator in this setting so as to give a comparison
in a competitive setting. Specifically, we assess the
performance of our estimator of Ey∼p(y|x)[f(y)]
given in Eq. (17)—using inclusion probability
estimates from Eq. (25) with M = 1 and with
importance weight normalization—in comparison
to three other approaches: Monte Carlo (MC)
sampling, the sum-and-sample (SAS) estimator,
and stochastic beam search (SBS).

Monte Carlo. Under the Monte Carlo sampling
scheme with sample size K, we estimate the ex-
pected value of f under our model using Eq. (16)
with a sample y(1), . . . ,y(K) i.i.d.∼ p.

Sum and Sample. The sum-and-sample estima-
tor (Botev et al., 2017; Liu et al., 2019; Kool et al.,
2020) is an unbiased estimator that takes as input a
deterministically chosen set Y of size K − 1 and
samples an additional y′ from the remaining ele-
ments, supp(p) \ Y , where we obtain the set Y
using beam search in our experiments. Formally,

13Label-smoothing (Szegedy et al., 2016) is typically also
employed, which leads to even higher entropy distributions.

https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation
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Figure 1: BLEU score estimates for three different sentences using estimators for respective decoding methods. τ
indicates scaling temperature; τ values and sentences are chosen to mimic (Kool et al., 2019).

the SAS estimator can be written as:

GSAS
def
=

K−1∑
k=1

p(y(k))f(y(k)) (30)

+

(
1−

K−1∑
k=1

p(y(k))

)
f(y′)

Stochastic Beam Search. Stochastic beam
search (Kool et al., 2019, 2020) is a SWOR algo-
rithm likewise built on top of beam search. The
algorithm makes use of truncated Gumbel random
variables at each iteration, resulting in a sampling
design equivalent to performing the Gumbel-
top-k trick (Vieira, 2014) on the distribution p.
Estimators built using SBS likewise follow the
Horvitz–Thompson scheme of Eq. (17); we refer
the reader to the original work for inclusion proba-
bility computations. They suggest normalizing the
estimator by the sum of sample inclusion probabil-
ities to help reduce variance; we therefore likewise
perform this normalization in our experiments.

To assess the error of our estimator, we compute
its root MSE (RMSE) with respect to a baseline
result. While computing the exact value of an
expectation is typically infeasible in the sequence
model setting, we can average our (unbiased) MC
estimator in Eq. (16) over multiple runs to create
a good baseline. Specifically, we compute our
MC estimator 50 times for a large sample size
(K = 200); variances are reported in App. D.

13We refer the reader to the original work (Kool et al., 2019)
for equations for inclusion probability estimates.

Probabilistic models for language generation typ-
ically have large vocabularies. In this setting, the
computation of Eq. (12) is inefficient due to the
large number of items in the set that are assigned
very small probability under the model. We ex-
periment with truncating this distribution such that
the set of possible extensions of a sequence consist
only of the highest probability tokens within the
core n% of probability mass (0.99 in our experi-
ments), similar to the process in nucleus sampling
(Holtzman et al., 2020). We compare this approach
to the original algorithm design in App. D and see
that empirically, results are virtually unchanged;
the following results use this method. We also
compare the decoding time of different sampling
methods in Fig. 7.

BLEU Score Estimation. BLEU (Papineni et al.,
2002) is a widely used automatic evaluation metric
for the quality of machine-generated translations.
Estimates of BLEU score are used in minimum
risk training (Shen et al., 2016) and reinforcement
learning-based approaches (Ranzato et al., 2016)
to machine translation. As such, accurate and low-
variance estimates are critical for the algorithms’
performance. Formally, we estimate the expected
value of f(y) = BLEU(x,y), whose dependence
on x we leave implicit, under our NMT model p
for reference translation x. For comparison, we use
the same sentences and similar annealing tempera-
tures14 τ evaluated by Kool et al. (2019). We repeat

14Results for τ = 0.05 converged rapidly for all estimators,
thus not providing an interesting comparison.
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(a) RMSE of BLEU score estimator for different temperatures. Results are averaged across several sentences.
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(b) RMSE of conditional model entropy estimator for various temperatures. Results are averaged across several
sentences. We see a larger bias under both CPSBS and SBS at higher temperatures in these experiments.

Figure 2: RMSE evaluations.

the sampling 20 times and plot the value and stan-
dard deviation (indicated by shaded region) of dif-
ferent estimators in Fig. 1. From Fig. 1, we can see
that CPSBS has lower variance than our baseline es-
timators across all temperatures and data points.15

Especially in the low temperature setting, our esti-
mator converges rapidly with minor deviation from
the exact values even for small sample sizes. Ad-
ditionally, in Fig. 2a we see that the RMSE is typ-
ically quite low except at higher temperatures. In
such cases, we observe the effects of biasedness,
similar to Kool et al. (2019)’s observations.

Conditional Entropy Estimation. We perform
similar experiments for estimates of a model’s con-
ditional entropy, i.e., f(y) = − log p(y | x),
whose dependence on x we again leave implicit.
We show results in Fig. 2b, with plots of the value
in App. D since results are quite similar to Fig. 1.
We see further confirmation that our estimator built
on CPSBS is generally quite efficient.

5.2 Diverse Sampling

We show how CPSBS can be used as a diverse set
sampling design for language generation models.
We generate a sample of translations YT ∼ P , i.e.,
according to the CPSBS scheme, where weights
are set as wn = p(y(n)

≤t )/(1 − p(y(n)
≤t )) at each

time step, as recommended in §3. In Fig. 3, we
show the trade-off between minimum, average and
maximum sentence-level BLEU score (as a quality
measure) and n-gram diversity, where we define n-
gram diversity D as the average fraction of unique

15The sampling distribution at n = 1 is not the same across
strategies, hence the difference in variances even at n = 1.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

15

20

25

30

35

40

45

Sampling
SBS
DiverseBS
CPSBS

Diversity

B
LE

U
 S

co
re

Figure 3: Average (± min and max) BLEU score ver-
sus diversity for sample size k = 5. Points correspond
to different annealing temperatures {0.1, . . . , 0.8}. Re-
sults for k = 10, 20 show very similar trends.

vs. total n-grams for n = 1, 2, 3, 4 in a sentence:

D =

4∑
n=1

#unique n-grams in K strings
# n-grams in K strings

(31)

Metrics are averaged across the corpus. We follow
the experimental setup of Kool et al. (2019), using
the newstest2014 dataset and comparing three
different decoding methods: SBS, diverse beam
search (DiverseBS; Vijayakumar et al., 2018)
and ancestral sampling. As in their experiments,
we vary the annealing temperature in the range
{0.1, 0.2, . . . , 0.8} as a means of encouraging di-
versity; for DiverseBS we instead vary the strength
parameter in the same range. Interestingly, we
see that temperature has virtually no effect on the
diversity of the set of results returned by CPSBS.
Despite this artifact, for which the authors have not



found a theoretical justification,16 the set returned
by CPSBS is still overall more diverse (position
on x-axis) than results returned by DiverseBS and
reflect better min, max, and average BLEU in com-
parison to random sampling. SBS provides a better
spectrum for the diversity and BLEU tradeoff; we
thus recommend SBS when diverse sets are desired.

6 Conclusion

In this work, we present conditional Poisson
stochastic beam search, a sampling-without-
replacement strategy for sequence models.
Through a simple modification to beam search,
we turn this mainstay decoding algorithm into
a stochastic process. We derive a low-variance,
consistent estimator of inclusion probabilities
under this scheme; we then present a general
framework for using CPSBS to construct statistical
estimators for expectations under sequence models.
In our experiments, we observe a reduction in
mean square error, and an increase in sample
efficiency, when using our estimator in comparison
to several baselines, showing the benefits of
CPSBS.
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Jaroslav Hájek. 1964. Asymptotic theory of rejec-
tive sampling with varying probabilities from a fi-
nite population. Annals of Mathematical Statistics,
35(4):1491–1523.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In Proceedings of the 7th International
Conference on Learning Representations.

D. G. Horvitz and D. J. Thompson. 1952. A generaliza-
tion of sampling without replacement from a finite
universe. Journal of the American Statistical Asso-
ciation, 47(260):663–685.

Wouter Kool, Herke Van Hoof, and Max Welling. 2019.
Stochastic beams and where to find them: The
Gumbel-top-k trick for sampling sequences without
replacement. In Proceedings of the 36th Interna-
tional Conference on Machine Learning.

Wouter Kool, Herke van Hoof, and Max Welling. 2020.
Estimating gradients for discrete random variables
by sampling without replacement. In Proceedings of
the 8th International Conference on Learning Repre-
sentations.

Alex Kulesza and Ben Taskar. 2012. Determinantal
point processes for machine learning. Foundations
and Trends® in Machine Learning, 5(2–3):123–286.

https://link.springer.com/article/10.1023/A:1010091628740
https://link.springer.com/article/10.1023/A:1010091628740
https://link.springer.com/article/10.1023/A:1010091628740
https://www.routledge.com/Mathematical-Statistics-Basic-Ideas-and-Selected-Topics-Volume-I-Second/Bickel-Doksum/p/book/9781498723800
https://www.routledge.com/Mathematical-Statistics-Basic-Ideas-and-Selected-Topics-Volume-I-Second/Bickel-Doksum/p/book/9781498723800
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://doi.org/https://doi.org/10.1111/j.1467-9469.2006.00497.x
https://doi.org/https://doi.org/10.1111/j.1467-9469.2006.00497.x
http://proceedings.mlr.press/v54/botev17a.html
http://proceedings.mlr.press/v54/botev17a.html
http://proceedings.mlr.press/v54/botev17a.html
http://proceedings.mlr.press/v54/botev17a.html
http://proceedings.mlr.press/v54/botev17a.html
http://proceedings.mlr.press/v54/botev17a.html
https://dl.acm.org/doi/book/10.5555/1213040
https://dl.acm.org/doi/book/10.5555/1213040
https://dl.acm.org/doi/book/10.5555/1213040
https://dl.acm.org/doi/book/10.5555/1213040
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/https://doi.org/10.1016/j.jspi.2008.09.015
https://doi.org/https://doi.org/10.1016/j.jspi.2008.09.015
https://books.google.ch/books?id=DxHvAAAAMAAJ
https://doi.org/10.1214/aoms/1177700375
https://doi.org/10.1214/aoms/1177700375
https://doi.org/10.1214/aoms/1177700375
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
http://www.jstor.org/stable/2280784
http://www.jstor.org/stable/2280784
http://www.jstor.org/stable/2280784
https://proceedings.mlr.press/v97/kool19a.html
https://proceedings.mlr.press/v97/kool19a.html
https://proceedings.mlr.press/v97/kool19a.html
https://openreview.net/forum?id=rklEj2EFvB
https://openreview.net/forum?id=rklEj2EFvB
https://doi.org/10.1561/2200000044
https://doi.org/10.1561/2200000044


Shankar Kumar and William Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 169–176, Boston, Mas-
sachusetts, USA. Association for Computational
Linguistics.

Runjing Liu, Jeffrey Regier, Nilesh Tripuraneni,
Michael Jordan, and Jon Mcauliffe. 2019. Rao-
Blackwellized stochastic gradients for discrete dis-
tributions. In Proceedings of the 36th International
Conference on Machine Learning.

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020a.
If beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2173–2185, Online. Association for Computa-
tional Linguistics.

Clara Meister, Martina Forster, and Ryan Cotterell.
2021. Determinantal beam search. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 6551–6562,
Online. Association for Computational Linguistics.

Clara Meister, Tim Vieira, and Ryan Cotterell. 2020b.
Best-first beam search. Transactions of the Associa-
tion for Computational Linguistics, 8:795–809.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018a. Analyzing uncer-
tainty in neural machine translation. In Proceedings
of the 35th International Conference on Machine
Learning.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018b. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 1–9,
Brussels, Belgium. Association for Computational
Linguistics.

Art B. Owen. 2013. Monte Carlo theory, methods and
examples.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, pages 311–318.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In Proceed-
ings of the 4th International Conference on Learn-
ing Representations.

Raj Reddy. 1977. Speech understanding systems: A
summary of results of the five-year research effort at
Carnegie Mellon University. Technical report.

Reuven Y. Rubinstein and Dirk P. Kroese. 2016. Simu-
lation and the Monte Carlo Method, 3rd edition. Wi-
ley Publishing.

Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kar-
tik Talamadupula, Bowen Zhou, Yoshua Bengio,
and Aaron Courville. 2017. Multiresolution recur-
rent neural networks: An application to dialogue
response generation. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1683–1692, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Kensen Shi, David Bieber, and Charles Sutton. 2020.
Incremental sampling without replacement for se-
quence models. In Proceedings of the 37th Inter-
national Conference on Machine Learning.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna. 2016. Rethinking the inception architec-
ture for computer vision. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 2818–2826, Los Alamitos, CA, USA.
IEEE Computer Society.
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A Conditional Poisson Sampling

Here we provide a brief overview of the sampling design at the core of CPSBS: conditional Poisson
sampling. We consider a base set B where |B| = N and we map the elements of B = {y(1), . . . ,y(N)}
to the integers {1, . . . , N}. As a warm up, we first consider (unconditional) Poisson sampling, also known
as a Bernoulli point process. To sample a subset Y ⊆ B, we do as follows: for each element y ∈ B, we
flip a coin where the odds of heads is w(y). Then, we simply take Y to be the subset of elements whose
coin flips were heads. However, this sampling scheme clearly does not guarantee a sample of K items,
which can cause problems in our application; sampling more than K items would make the stochastic
beam search process inefficient while sampling fewer than K—or even 0—items may not leave us with a
large enough set at the end of our iterative process.

If instead, we condition on the sets always having a prescribed size K, i.e., reject samples where
|Y | 6= K, we arrive at the conditional Poisson process. Formally, the conditional Poisson distribution is
defined over Y ⊆ B as follows,

Q(Y )
def∝

{∏
y∈Y w(y) if |Y |=K

0 otherwise
(32)

By analyzing Eq. (32), we can see that sets with the largest product of weights are the most likely to be
sampled; further, this distribution is invariant to rescaling of weights due to the size requirement. This
is similar to the conditions under which beam search chooses the set of K largest weight, i.e., highest
scoring, elements. Indeed, we note the extreme similarity between Eq. (4) and Eq. (32), the only difference
being a dependence on a prior set. However, unlike beam search, sets with a lower weight product now
have the possibility of being chosen.

B Proofs

B.1 Unbiasedness of the Horvitz–Thompson Estimator

Proposition B.1. Given a SWOR design Q over the set B = {1, . . . , N} with inclusion probabilities
π(n), the Horvitz–Thompson estimator (Eq. (17)) gives us an unbiased estimator of En∼p f(n), where
f : B → Rd is a function whose expectation under p we seek to approximate.

Proof.

E
Y∼Q

[GHT] = E
Y∼Q

N∑
n=1

p(n)

π(n)
f(n) (33a)

= E
Y∼Q

∑
n∈B

p(n)

π(n)
1{n ∈ Y } f(n) (33b)

=
∑
n∈B

p(n)

π(n)
f(n) E

Y∼Q
1{n ∈ Y } (33c)

=
∑
n∈B

p(n)

π(n)
f(n)π(n) (33d)

=
∑
n∈B

p(n) f(n) (33e)

= E
n∼p

f(n) (33f)

�



B.2 Proofs of Expected Values and Variances of Inclusion Probability Estimators

Lemma 4.1. The joint proposal distribution17 P̃ (Ỹ1, . . . , ỸT )
def
=
∏T
t=1 Q̃t(Ỹt | Ỹt−1) may be expressed in

terms of P as follows:

P̃ (Ỹ1, . . . , ỸT ) =
P (Ỹ1, . . . , ỸT )∏T
t=1 πQt(y≤t | Ỹt−1)

(23)

where we define P (Ỹ1, . . . , ỸT )
def
=
∏T
t=1Qt(Ỹt | Ỹt−1) as the joint probability of the beams under the

original distributions Qt. We omit that both P and P̃ are conditioned on Y0.

Proof. Consider the probability of sampling Ỹ1, . . . , ỸT according to P̃ . Algebraic manipulation reveals:

P̃ (Ỹ1, . . . , ỸT ) =
Qt(Ỹ1 | Y0)
πQt(y≤1 | Y0)

· · · Qt(ỸT | ỸT−1)
πQt(y≤T | ỸT−1)

(34a)

=
P (Ỹ1, . . . , ỸT )∏T
t=1 πQt(y≤t | Ỹt−1)

(34b)

which proves the identity. �

Proposition 4.1. Eq. 19 has the following two properties:

i) π̂MC

P is an unbiased estimator of πP and

V [π̂MC

P ] =
1

M

(
πP (y)− πP (y)2

)
(20)

ii) 1/π̂MC

P is a consistent estimator of 1/πP with asymptotic variance

Va

[
1

π̂MC
P (y)

]
=

1

M

(
1

πP (y)3
− 1

πP (y)2

)
(21)

Here Va denotes the asymptotic variance, which is the variance after the number of samples M is large
enough such that the central limit theorem has kicked in (Bickel and Docksum, 2015).

Proof. i) The estimator is easily shown to be unbiased:

E π̂MC

P (y)
def
=

1

M

M∑
m=1

1

{
y ∈ Y (m)

T

}
= πP (y) (35)

and its variance may be derived as follows:

V [π̂MC

P (y)]
def
= V

[
1

M

M∑
m=1

1

{
y ∈ Y (m)

T

}]
(36a)

=
1

M
V
[
1

{
y ∈ Y (m)

T

}]
(36b)

=
1

M

(
E
(
1

{
y ∈ Y (m)

T

}2
)
− E

(
1

{
y ∈ Y (m)

T

})2)
(36c)

=
1

M

(
πP (y)− πP (y)2

)
(36d)

ii) By the strong law of large numbers, we have

lim
M→∞

1

M

M∑
m=1

1

{
y ∈ Y (m)

T

}
= πP (y) (37)

17We have omitted dependency on y for brevity.



Since 1/x is continuous, we may appeal to the continuous mapping theorem to achieve consistency:

lim
M→∞

1

1
M

∑M
m=1 1

{
y ∈ Y (m)

T

} =
1

limM→∞
1
M

∑M
m=1 1

{
y ∈ Y (m)

T

} =
1

πP (y)
(38)

We can compute the asymptotic variance by the delta rule:

Va

[
1

π̂MC
P (y)

]
=

1

M

V [π̂ IS

P (y)]

πP (y)4
(apply the delta rule) (39a)

=
1

M

πP (y)− πP (y)2

πP (y)4
(plugging in the variance computed above) (39b)

=
1

M

(
1

πP (y)3
− 1

πP (y)2

)
(39c)

�

Proposition 4.2. Eq. (25) has the following two properties:

i) π̂ IS

P is an unbiased estimator of πP ;

ii) The estimator of the inverse inclusion probabilities 1/π̂ IS

P (y) is consistent with the following upper
bound on the asymptotic variance:

Va

[
1

π̂ IS
P (y)

]
≤ 1

M

r − 1

πP (y)2
(27)

where we assume that the following bound:∏T
t=1 πQt(y≤t | Ỹt−1)

πP (y)
≤ r (28)

holds for all Ỹ1, . . . , ỸT .

Proof. i) We first prove that the estimator of the inclusion probabilities is unbiased through the following
manipulation:

E [π̂ IS

P (y)] = E

[
1

M

M∑
m=1

T∏
t=1

πQt(y≤t | Ỹ
(m)
t−1 )

]
(40a)

=
∑

Ỹ1,...,ỸT

P̃ (Ỹ1, . . . , ỸT )
T∏
t=1

πQt(y≤t | Ỹt−1) (40b)

=
∑

Ỹ1,...,ỸT

P̃ (Ỹ1, . . . , ỸT )
P (Ỹ1, . . . , ỸT )

P (Ỹ1, . . . , ỸT )

T∏
t=1

πQt(y≤t | Ỹt−1) (40c)

=
∑

Ỹ1,...,ỸT

P (Ỹ1, . . . , ỸT )
P̃ (Ỹ1, . . . , ỸT )

P̃ (Ỹ1, . . . , ỸT )
(Lemma 4.1) (40d)

=
∑

Ỹ1,...,ỸT

P (Ỹ1, . . . , ỸT ) (40e)

=
∑

Y1,...,YT

P (Y1, . . . , YT )1
{
y ∈ YT

}
(definition of ỸT ) (40f)

= πP (y) (40g)



ii) To show consistency, we appeal to the strong law of large number and the continuous mapping theorem.
By the strong law of large numbers, we have that

lim
M→∞

1

M

M∑
m=1

T∏
t=1

πQt(y≤t | Ỹ
(m)
t−1 ) = πP (y) (41)

Since 1/x is continuous, we have

lim
M→∞

1
1
M

∑M
m=1

∏T
t=1 πQt(y≤t | Ỹ

(m)
t−1 )

=
1

limM→∞
1
M

∑M
m=1

∏T
t=1 πQt(y≤t | Ỹ

(m)
t−1 )

=
1

πP (y)
(42a)

which shows consistency. Now, we derive a bound on the asymptotic variance of the inverse inclusion
probabilities: Suppose, ∏T

t=1 πQt(y≤t | Ỹt−1)
πP (y)

≤ r, ∀ Ỹ1, . . . , ỸT (43)

We start with the variance of importance sampling. This is a standard result (Rubinstein and Kroese,
2016). Then we proceed with algebraic manipulation integrating the assumption above:

∑
Ỹ1,...,ỸT

1

{
y ∈ ỸT

}2
P (Ỹ1, . . . , ỸT )

2

P̃ (Ỹ1, . . . , ỸT )
− πP (y)2 (44a)

=
∑

Ỹ1,...,ỸT

P (Ỹ1, . . . , ỸT )
T∏
t=1

πQt(y≤t | Ỹt−1)− πP (y)2 (44b)

≤
∑

Ỹ1,...,ỸT

P (Ỹ1, . . . , ỸT )πP (y)r − πP (y)2 (44c)

= πP (y)πP (y)r − πP (y)2 (44d)

= πP (y)
2r − πP (y)2 (44e)

= (r − 1)πP (y)
2 (44f)

We can compute the asymptotic variance by the delta rule:

Va

[
1

π̂ IS
P (y)

]
=

1

M

V [π̂ IS

P (y)]

πP (y)4
(apply the delta rule) (45a)

≤ 1

M

(r − 1)πP (y)
2

πP (y)4
(plugging in the above bound) (45b)

=
1

M

(r − 1)

πP (y)2
(45c)

which proves the result. �



C Pseudocode

Algorithm 1 Dynamic program algorithm for Z
Input: K: Size of subset

w1, . . . , wN : weights for each element of the base set
Output: W : elementary symmetric polynomials of w1, . . . , wN ; Z =WN,K

1: W ← 0(K+1)×(N+1)

2: W0,: = 0; W:,0 = 1
3: for n = 1, . . . , N :
4: for k = 1, . . . ,K :
5: Wn,k ←Wn−1,k + wnWn−1,k−1

6: return W

Algorithm 2 Dynamic program for calculating inclusion probabilities π
Input: K: Size of subset

w1, . . . , wN : weights for each element of the base set
1: Run Alg. 1 to compute W
2: . The code below was derived by manually apply algorithmic differentiation (Bücker et al., 2006) to Alg. 1.

3:
.
W ← 0(K+1)×(N+1) . Initialize adjoints

4:
.
w ← 0N

5:
.
WN,K = 1 . Initialize output value to 1

6: for n = N, . . . , 1 :
7: for k = K, . . . , 1 :
8:

.
wn +=

.
Wn,kWn−1,k−1

9:
.
Wn−1,k−1 +=

.
Wn,k wn

10:
.
Wn−1,k +=

.
Wn,k

11: . Apply Eq. (24)

12: π ← 0N

13: for n = 1 . . . N :
14: πn ← wn

Z
.
wn

return π



D Experimental Setup and Additional Results

We use a Transformer-based model trained according to Ott et al. (2018b) on the WMT’14 English-French
dataset.18 We use the pre-trained model checkpoints made available by fairseq.19 Data preprocessing
steps, model hyperparameters and baseline performances can be found in the original work and on the
fairseq website. All evaluations are performed on the wmt14.v2.en-fr.newstest2014 version of the
newstest data set. We show additional results using the setup in §5 in Figs. 4 to 6. We provide an
empirical runtime analysis in Fig. 7. Table 2 shows the variance of baseline estimator value for the three
sentences used in RMSE experiments.
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Figure 4: Entropy estimates for three different sentences using estimators for respective decoding methods. τ
indicates scaling temperature. Values are chosen to mimic (Kool et al., 2019).
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Figure 5: BLEU score estimates using unnormalized versions of SBS and CPSBS estimators.

BLEU Estimator Entropy Estimator

Temperature Temperature

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

Sentence# 1500 0.00 0.00 0.03 0.08 0.00 0.01 0.07 0.10
Sentence# 2000 0.01 0.04 0.04 0.08 0.00 0.00 0.00 0.02
Sentence# 2500 0.07 0.09 0.25 0.84 0.00 0.01 0.03 0.04

Table 2: Variance of baseline estimator (MC for k = 200 in 50 iterations) for the three sentences.

18available at http://statmt.org/wmt14/translation-task.html
19https://github.com/pytorch/fairseq/tree/master/examples/translation

http://statmt.org/wmt14/translation-task.html
https://github.com/pytorch/fairseq/tree/master/examples/translation
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Figure 6: BLEU score estimates for CPSBS both with and without truncation of the sampling distribution. We see
that our estimator with truncation provides virtually the same results.
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Figure 7: A comparison between decoding time of different sampling methods. The y-axis shows the average
decoding time of the three sentences as before. The x-axis shows the number of samples taken for each sentence.
All methods are tested on CPU.


