
Is Sparse Attention more Interpretable?

Clara MeisterE Stefan LazovF Isabelle AugensteinÁ Ryan CotterellF,E
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Abstract

Sparse attention has been claimed to increase
model interpretability under the assumption
that it highlights influential inputs. Yet
the attention distribution is typically over
representations internal to the model rather
than the inputs themselves, suggesting this
assumption may not have merit. We build on
the recent work exploring the interpretability
of attention; we design a set of experiments
to help us understand how sparsity affects our
ability to use attention as an explainability tool.
On three text classification tasks, we verify
that only a weak relationship between inputs
and co-indexed intermediate representations
exists—under sparse attention and other-
wise. Further, we do not find any plausible
mappings from sparse attention distributions
to a sparse set of influential inputs through
other avenues. Rather, we observe in this
setting that inducing sparsity may make it less
plausible that attention can be used as a tool
for understanding model behavior.

1 Introduction

Interpretability research in natural language pro-
cessing (NLP) is becoming increasingly important
as complex models are applied to more and more
downstream decision making tasks. In light of
this, many researchers have turned to the attention
mechanism, which has not only led to impressive
performance improvements in neural models, but
has also been claimed to offer insights into how
models make decisions. Specifically, a number of
works imply or directly state that one may inspect
the attention distribution to determine the amount
of influence each input token has in a model’s
decision-making process (Xie et al., 2017; Mullen-
bach et al., 2018; Niculae et al., 2018, inter alia).

Many lines of work have gone on to exploit this
assumption when building their own “interpretable”
models or analysis tools (Yang et al., 2016; Tu et al.,

2016; De-Arteaga et al., 2019); one subset has even
tried to make models with attention more inter-
pretable by inducing sparsity—a common attribute
of interpretable models (Lipton, 2018; Rudin,
2019)—in attention weights, with the motivation
that this allows model decisions to be mapped to
a limited number of items (Martins and Astudillo,
2016; Malaviya et al., 2018; Zhang et al., 2019).
Yet, there lacks concrete reasoning or evidence that
sparse attention weights leads to more interpretable
models: customarily, attention is not directly over
the model’s inputs, but rather over some represen-
tation internal to the model, e.g. the hidden states
of a recurrent network or contextual embeddings
of a Transformer (see Fig. 1). Importantly, these
internal representations do not solely encode infor-
mation from the input token they are co-indexed
with (Salehinejad et al., 2017; Brunner et al., 2020),
but rather from a range of inputs. This presents
the question: if internal representations themselves
may not be interpretable, can we actually deduce
anything from “interpretable” attention weights?

We build on the recent line of work challenging
the validity of attention-as-explanation methods
(Jain and Wallace, 2019; Serrano and Smith, 2019;
Grimsley et al., 2020, inter alia) and specifically
examine how sparsity affects their observations. To
this end, we introduce a novel entropy-based metric
to measure the dispersion of inputs’ influence,
rather than just their magnitudes. Through exper-
iments on three text classification tasks, utilizing
both LSTM and Transformer-based models, we
observe how sparse attention affects the results of
Jain and Wallace (2019) and Wiegreffe and Pinter
(2019), additionally exploring whether it allows
us to identify a core set of inputs that are important
to models’ decisions. We find we are unable to
identify such a set when using sparse attention;
rather, it appears that encouraging sparsity may
simultaneously encourage a higher degree of



contextualization in intermediate representations.
We further observe a decrease in the correlation
between the attention distribution and input feature
importance measures, which exacerbates issues
found by prior works. The primary conclusion of
our work is that we should not believe sparse atten-
tion enhances model interpretability until we have
concrete reasons to believe so; in this preliminary
analysis, we do not find any such evidence.

2 Attention-based Neural Networks

We consider inputs x = x1 · · ·xn ∈ Vn of length
n where tokens are taken from an alphabet V . We
denote the embedding of x, e.g., its one hot encod-
ing or (more commonly) a linear transformation
of its one-hot encoding with an embedding matrix
E ∈ Rd×|V|, as X(e) ∈ Rd×n. Our embedded in-
put X(e) is then fed to an encoder, which produces
n intermediate representations I = [h1; . . . ;hn],
where hi ∈ Rm and m is a hyperparameter of the
encoder. This transformation is very architecture
dependent.

An alignment function A(·, ·) maps a query q
and a key K to weights a(t) for a decoding time
step t; we subsequently drop t for simplicity. In col-
loquial terms, A chooses which values ofK should
receive the most attention based on q, which is then
represented in the vector a(t) ∈ Rn. For the NLP
tasks we consider, we have K = I , the encoder
outputs. A query q may be, e.g., a representation
of the question in question answering.

The weights a are projected to sum to 1, which
results in the attention distribution α. Mathe-
matically, this is done via a projection onto the
probability simplex using a projection function φ,
e.g., softmax or sparsemax. We then compute the
context vector as c =

∑n
i=1 αi hi. This context

vector is fed to a decoder, whose structure is again
architecture dependent, which generates a (possi-
bly unnormalized) probability distribution over the
set of labels Y , where Y is defined by the task.

Attention. We experiment with two methods of
constructing an attention distribution: (1) addi-
tive attention, proposed by Bahdanau et al. (2015):
A(K,q)i = v> tanh(W1Ki + W2q) and (2) the
scaled dot product alignment function, as in the
Transformer network: A(K,q) = K>q√

m
where

v ∈ Rl and W1,W2 ∈ Rl×m are weight matrices.
Note that the original (without attention) neural
encoder–decoder architecture, as in Sutskever et al.

(2014), can be recovered with alignment function
A(·, ·) = [0, . . . , 0, 1], i.e., only the last of the n in-
termediate representations is given to the decoder.

Projection Functions. A projection function φ
takes the output of the alignment function and maps
it to a valid probability distribution: φ : Rn →
∆n−1. The standard projection function is softmax:

φsoft(a) =
exp(a)∑

i∈[n] exp(ai)
(1)

= argmin
p∈∆n−1

∑
i∈[n]

pi log pi − p>a


However, softmax leads to non-sparse solutions as
an entry φsoft(a)i can only be 0 if ai =−∞. Al-
ternatively, Martins and Astudillo (2016) introduce
sparsemax, which can output sparse distributions:

φsparse(a) = argmin
p∈∆n−1

‖p− a‖22 (2)

In words, sparsemax directly maps a onto the
probability simplex, which often leads to solutions
on the boundary, i.e. where at least one entry of
p is 0. The formulation of sparsemax in Eq. (2)
does not give us an explicit medium for controlling
the degree of sparsity. The α-entmax (Peters
et al., 2019) and sparsegen (Laha et al., 2018)
transformations fill this gap; we employ the latter:

φsparseg(a) = argmin
p∈∆n−1

‖p− g(a)‖22−λ ‖p‖
2
2 (3)

where the degree of sparsity can be tuned via the hy-
perparameter λ ∈ (−∞, 1). Note that a larger λ en-
courages more sparsity in the minimizing solution.

3 Model Interpretability

Model interpretability and explainability have been
framed in different ways (Gehrmann et al., 2019)—
as model understanding tasks, where (spurious)
features learned by a model are identified, or as
decision understanding tasks, where explanations
for particular instances are produced. We consider
the latter in this paper. Such tasks can be framed as
generative, where models generate free text expla-
nations (Camburu et al., 2018; Kotonya and Toni,
2020; Atanasova et al., 2020b), or as post-hoc in-
terpretability methods, where salient portions of
the input are highlighted (Lipton, 2018; DeYoung
et al., 2020; Atanasova et al., 2020a).

As there does not exist a clearly superior choice
for framing decision understanding for NLP tasks



(Miller, 2019; Carton et al., 2020, ;inter alia),
we follow a substantial body of prior work in
considering the post-hoc definition of interpretabil-
ity based on local methods proposed by Lipton
(2018). This definition is naturally operationalized
through feature importance metrics and meta
models (Jacovi and Goldberg, 2020). Further,
we acknowledge the specific requirement that an
interpretable model obeys some set of structural
constraints of the domain in which it is used, such
as monotonicity or physical constraints (Rudin,
2019). For NLP tasks such as sentiment analysis or
topic classification, such constraints may logically
include the utilization of only a few key words
in the input when making a decision, in which
case, knowing the magnitude of the influence each
input token has on a model’s prediction through,
e.g., feature importance metrics, may suffice to
verify the model obeys such constraints. While
this collective definition is limited (Doshi-Velez
and Kim, 2017; Guidotti et al., 2018; Rudin, 2019),
we posit that if attention cannot provide model
interpretability at this level, then it would likewise
not be able to under more rigorous constraints.

3.1 Measures of Feature Importance
Gradient-Based. Gradient-based measures of
feature importance (FI; Baehrens et al., 2010; Si-
monyan et al., 2014; Poerner et al., 2018) use the
gradient of a function’s output w.r.t. a feature to
measure the importance of that feature. In the case
of an attentional neural network for binary classi-
fication f(·), we can take the gradient of f w.r.t.
the variable x and evaluate at a specific input x′ to
gain a sense of how much influence each x′i had on
the outcome ŷ = f(x′). These measures are not
restricted to the relationship between inputs xi and
the outcome f(x); they can also be adapted to mea-
sure for effects from and to intermediate represen-
tations hp. Formally, our measures are as follows:

gŷ(xi) =

∥∥∥∥ ∂f

∂X
(e)
i

∥∥∥∥
2∑n

k=1

∥∥∥∥ ∂f

∂X
(e)
k

∥∥∥∥
2

(4)

ghp(xi) =

∥∥∥∥∂||hp||2
∂X

(e)
i

∥∥∥∥
2∑n

k=1

∥∥∥∥∂||hp||2
∂X

(e)
k

∥∥∥∥
2

(5)

where gŷ(xi) ∈ [0, 1] and gxi(hp) ∈ [0, 1] rep-
resents the gradient-based FI of token xi on ŷ

and intermediate representation hp, respectively.
Gradient-based methods are often used in explain-
ability techniques, as they have exhibited higher
correlation with human judgement than others
(Atanasova et al., 2020a). Note that we take gradi-
ents w.r.t. the embedding of token xi and that in the
latter metric, we measure the influence of xi on the
magnitude of hp—a decision we discuss in App. A.

Erasure-based. As a secondary FI metric, we
observe how model predictions change when a spe-
cific input token is removed (i.e., Leave-One-Out;
LOO). For token xi, this can be calculated as:

Dŷ(xi) =
|ŷ − ŷ−i|∑n
k=1|ŷ − ŷ−k|

(6)

where ŷ−i is the prediction of a model with input
xi removed. The formula can also be used for inter-
mediate representations; we denote this as Dŷ(hi).

4 Experiments

Setup. We run experiments across several
model architectures, attention mechanisms, and
datasets in order to understand the effects of
inducing sparsity in attention. We use three binary
classification datasets: ImDB and SST (sentiment
analysis) and 20News (topic classification). We use
the dataset versions provided by Jain and Wallace
(2019), exactly following their pre-processing
steps. Further details, including model architecture
descriptions, dataset statistics and baselines
accuracies may be found in App. B.

Inputs and Intermediate Representations are
not Interchangeable. We first explore how
strongly-related inputs are to their co-indexed inter-
mediate representations. A strong relationship on
its own may validate the use of sparse attention, as
the ability to identify a subset of influential interme-
diate representations would then directly translate
to a set of influential inputs. Previous works show
that the “contribution” of a token xi to its intermedi-
ate representation hi is often quite low for various
model architectures (Salehinejad et al., 2017; Ming
et al., 2017; Brunner et al., 2020; Tutek and Snajder,
2020). In the context of attention, we find this prop-
erty to be evinced by the adversarial experiments
of Wiegreffe and Pinter (2019) (§4) and Jain and
Wallace (2019) (§4), which we verify in App. C.
They construct adversarial attention distributions
by optimizing for divergence from a baseline
model’s attention distribution by: (1) adopting all



Figure 1: Correlation between the attention distribu-
tion and gradient-based FI measures. We see a notably
stronger correlation between attention and FI of inter-
mediate representation than of inputs across all models.

IMDb 20-News SST
H̃(ghi(x)) H̃(ghi(x)) H̃(ghi(x))

BiLSTM (Softmax) 0.71 ± 0.09 0.75 ± 0.12 0.93 ± 0.05
BiLSTM (Sparsemax) 0.72 ± 0.10 0.68 ± 0.12 0.91 ± 0.07
Transformer (Softmax) 0.76 ± 0.08 0.48 ± 0.06 0.73 ± 0.09
Transformer (Sparsemax) 0.72 ± 0.09 0.46 ± 0.06 0.63 ± 0.08

Table 1: Mean entropy of gradient-based FI of input to
intermediate representations. Green numbers are std.
deviations. Projection functions are parenthesized.

of the baseline model’s parameters and directly op-
timizing for divergence and (2) training an entirely
new model and optimizing for divergence as part of
the training process. The former method leads to a
large drop in performance (accuracy) while the lat-
ter does not. If we believe the model must encode
the same information to achieve similar accuracy,
this discrepancy implies that in the latter method,
the model likely “redistributes” information across
encoder outputs (i.e., intermediate representations
hp), which would suggest token-level information
is not tied to a particular hp.

As further verification of this phenomenon in at-
tentional models, we report a novel quantification,
offering insights into whether individual interme-
diate representations can be linked primarily to
any single input—i.e., perhaps not the co-indexed
input; we measure the normalized entropy1 of the
gradient-based FI of inputs to intermediate repre-
sentations H̃(ghp(x)) ∈ [0, 1] to gain a sense of
how dispersed influence for intermediate represen-
tation is across inputs. A value of 1 would indicate
all inputs are equally influential; a value of 0 would
indicate solely a single input has influence on an in-
termediate representation. Results in Table 1 show

1We use Shannon entropy (H(p) = −
∑

x p(x) log p(x))
normalized (i.e. divided) by the maximum possible entropy of
the distribution to control for dimension.

Figure 2: Entropy of gradient-based gŷ(x) and LOO
Dŷ(x) FI distributions. Results are from models with
full spectrum of projection functions.

IMDb 20-News SST
BiLSTM (tanh) -0.935 -0.675 -0.866
Transformer (dot) -0.830 -0.409 -0.810

Table 2: Correlation between sparsegen parameter2 λ
and entropy of gradient-based input FI H̃(gŷ(x)).

consistently high entropy in the distribution of the
influence of inputs xi on an intermediate represen-
tation hp across all datasets, model architectures,
and projection functions, which suggests the
relationship between intermediate representations
and inputs is far from one-to-one in these tasks.

Sparse Attention 6= Sparse Input Feature
Importance. Our prior results demonstrated
that—even when using sparse attention—we can-
not identify a subset of influential inputs directly
through intermediate representations; we explore
whether a subset can still be identified through
FI metrics. In the case where the normalized FI

distribution highlights only a few key items, the
distribution will, by definition, have low entropy.
Thus, we explore whether sparse attention leads to
lower entropy input FI distributions in comparison
to standard attention. We find no such trend;
Fig. 2 shows that across all models and settings,
the entropy of the FI distribution is quite high.
Further, we see a consistent negative correlation
between this entropy and the sparsity parameter
of the sparsegen projection (Table 2), implying
that entropy of feature importance increases as we
raise the degree of sparsity in α.

Correlation between Attention and Feature Im-
portance. Finally, we follow the experimental
setup of Jain and Wallace (2019), who postulate
that if the attention distribution indicates which
inputs influence model behavior, then one may



Figure 3: Correlation between the attention distribu-
tion and input FI measures as a function of the spar-
sity penalty λ used in the projection function φsparseg.
x-axis is log-scaled for λ < 0 since λ ∈ (−∞, 1). Re-
sults are from the IMDb dataset.

reasonably expect attention to correlate2 with FI

measures of the input. While they find only a weak
correlation, we explore how inducing sparsity
in the attention distribution affects this result.
Surprisingly, Fig. 3 shows a downward trend in
this correlation as the sparsity parameter λ of the
sparsegen projection function is increased. As
argued by Wiegreffe and Pinter (2019), a lack
of this correlation does not indicate attention
cannot be used as explanation; FI measures are not
ground-truth indicators of critical inputs. However,
the inverse relationship between sparsity of input
FI and attention is rather surprising. By these
results, if sparse α actually provide more faithful
explanations, then widely-used FI metrics must
be flawed; alternatively, we could conclude that
sparsity in α leads to less faithful explanations. We
posit based on these collective results that promot-
ing sparsity in attention distribution may simply
lead to the dispersion of information to different
intermediate representations, a behavior similar to
that seen when optimizing attention for divergence
from another distribution, i.e., in the adversarial
experiments of Wiegreffe and Pinter (2019)
compared to those of Jain and Wallace (2019).

5 Related Work

A large body of work has recently challenged the
use of attention as an explanation for model deci-
sions. Perhaps the first in this line was Jain and Wal-
lace (2019), which revealed both a lack of correla-
tion between the attention distribution and well es-
tablished FI metrics and of unique optimal attention
weights. Serrano and Smith (2019) contempora-

2We use Kendall’s τ -b correlation (Knight, 1966).

neously found similar results. Subsequently, other
studies arrived at similar conclusions: for example,
Grimsley et al. (2020) found evidence that causal
explanations are not attainable from attention lay-
ers over text data; Pruthi et al. (2020) showed that
attention masks can be trained to give deceptive
explanations; Bastings and Filippova (2020) argue
that input saliency methods are better suited for
prediction explanations than attention. This work
is another such investigation, exploring attention’s
innate interpretability on a different axis.

This work also fits into the context of a larger
body of interpretability research in NLP, which
has challenged the informal use of terms such as
faithfulness, plausibility, and explainability (Lip-
ton, 2018; Arrieta et al., 2020; Jacovi and Goldberg,
2021, inter alia) and tried to quantify the reliabil-
ity of current definitions (Atanasova et al., 2020a).
While we consider these works in our experimen-
tal design—e.g., in our choice of FI metrics—we
recognize that further experiments are needed to
verify our findings: for example, similar experi-
ments could be performed using the DeYoung et al.
(2020) benchmark for evaluation; other FI metrics,
such as selective attention (Treviso and Martins,
2020) should additionally be considered.3

6 Conclusion

Prior work has cited interpretability as a driving fac-
tor for promoting sparsity in attention distributions.
We explore how induced sparsity affects the abil-
ity to use attention as a tool for explaining model
decisions. In our experiments on text classification
tasks, we see that while sparse attention distribu-
tions may allow us to pinpoint influential interme-
diate representations, we are unable to find any
plausible mapping from sparse attention to a small,
critical set of influential inputs. Rather, we find
evidence that inducing sparsity may make it even
less plausible to use attention to interpret model
behavior. We conclude that we need further reason
to believe sparse attention increases model inter-
pretability as our results do not support such claims.
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Ethical Considerations

Machine learning models are being deployed in an
increasing number of sensitive situations. In these
settings, it is critical that models are interpretable,
so that we can avoid e.g., inadvertent racial or gen-
der bias. Giving a false sense of interpretability can
allow models with undesirable (i.e., unethical or un-
stable) behavior to fly under the radar. We view this
work as another critique of interpretability claims
and hope our results will encourage the more care-
ful consideration of interpretability assumptions
when using machine learning models in practice.
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A Feature Importance Metrics

Notably, both inputs and intermediate representa-
tions are not single variables. Intermediate repre-
sentations are m-dimensional vectors and inputs x
are embedded as X(e), meaning each word xi is
represented by a d-dimensional vector. Therefore,
the gradient of f w.r.t. individual inputs or interme-
diate representations will likewise be a d- (or m-)
dimensional vector. To come up with a scalar esti-
mate of feature importance, we take theL2-norm of
the evaluated gradient.4 Subsequently, we normal-
ize over all xi (or hi) to calculate relative feature
importance of individual xi (or hi). The discussed
transformation can be mathematically formalized
by Eq. (4) and (5). For intermediate representa-
tions, this computation measures the influence on
the magnitude of hp rather than on hp itself. How-
ever, we also experimented with measuring the
influence directly on each facet of hp, taking the
magnitude of this vector. We found empirically
that the two measures returned nearly identical re-
sults while measuring influence on magnitude was
significantly more computationally efficient.

B Experimental Setup

We use exact datasets provided by and based our ex-
perimental framework on that of Jain and Wallace
(2019), which can be found at https://github.
com/successar/AttentionExplanation. For
both comparison and reproducibility, we exactly
follow their preprocessing steps, which are de-
scribed in their paper. Source code, model statistics,
and links to datasets can be found at the above link.
In the experiments we use a Bidirectional LSTM
encoder or a Transformer encoder which has 2 lay-
ers with 1 attention head. All hidden dimensions
are set to 128. The models and the training proce-
dure have been implemented by using the PyTorch
library Paszke et al. (2019). For training we use
the Adam optimizer Kingma and Ba (2015) with
the amsgrad Reddi et al. (2018) option enabled.
Some important hyperparameters are listed in Ta-
ble 4; minor tuning was performed in order to reach
comparable performance with respect to Jain and
Wallace (2019) and Wiegreffe and Pinter (2019).
An important note regarding this table is that the
listed learning rate and weight decay correspond to
all model parameters except the ones specifically
for the attention mechanism. The latter we train

4Other norms, e.g., the L1-norm, would also be
appropriate—we leave the exploration of these to future work.

without a weight decay and with either the same or
10x larger learning rate.

Train size Test size Accuracy (T) Accuracy (B)
IMDb 25000 4356 0.89 0.90
20News 1426 334 0.91 0.91
SST 6355 1725 0.79 0.82

Table 3: Dataset statistics and baseline accuracy scores
on test sets for Transformer with dot product atten-
tion (T) and BiLSTM with additive attention (B). All
datasets are in english.

Batch Size Learning Rate Weight Decay
LSTM 32 1× 10−4 1× 10−5

Transformer 32 1× 10−5 1× 10−5

Table 4: Hyperparameters used for training the models
with LSTM and Transformer encoder respectively.

C Additional Results

C.1 Adversarial Experiments
We construct adversarial attention distributions by
optimizing for the divergence5 of the distribution
from a baseline model’s attention distribution us-
ing two methods: (1) by transferring all model
parameters of a pre-trained base model and opti-
mizing for divergence (frozen) and (2) training an
entirely new model and optimizing for divergence
(unfrozen). We use Jensen-Shannon divergence
(JSD) to measure the difference between the ad-
versarial and baseline distributions. Table 5 shows
that although we can attain high JSD under both
methods, the former leads to a large drop in per-
formance. If we believe the model must encode
the same information to achieve similar accuracy,
the difference in accuracies of the two methods
implies that in the first method, the model likely
redistributes information across encoder outputs.

C.2 Correlation between Attention
Distribution and Inputs/Intermediate
Representations

We provide the full results of our experiments on
correlation of the input and intermediate represen-
tations with the attention distribution in Table 6.

5Loss function is same as in in §4 of Wiegreffe and Pinter
(2019)

https://github.com/successar/AttentionExplanation
https://github.com/successar/AttentionExplanation


IMDb SST 20News
JSD Acc. JSD Acc. JSD Acc.

BiLSTM (adv. frozen) 0.67 0.76 -.14 0.62 0.76 -.06 0.67 0.78 -.13
BiLSTM (adv. unfrozen) 0.67 0.90 -.00 0.61 0.82 -.00 0.67 0.91 -.00
Transformer (adv. frozen) 0.62 0.71 -.18 0.57 0.76 -.03 0.62 0.87 -.03
Transformer (adv. unfrozen) 0.64 0.87 -.02 0.57 0.78 -.01 0.62 0.92 + .01

Table 5: JSD (between original and adversarial attention distributions) and model accuracy on test sets. Colored
numbers are differences from baseline. While Wiegreffe and Pinter (2019) present TVD, we present JSD as it
is the metric being optimized over. Note that JSD is a lower-bound on TVD and should roughly show the same
trends.

IMDb 20-News SST
gŷ(x) Dŷ(x) gŷ(x) Dŷ(x) gŷ(x) Dŷ(x)

BiLSTM Softmax 0.36 ± 0.12 0.31 ± 0.08 0.24 ± 0.24 0.17 ± 0.17 0.25 ± 0.28 0.35 ± 0.18
BiLSTM Sparsemax 0.31 ± 0.08 0.25 ± 0.06 0.25 ± 0.13 0.23 ± 0.09 0.45 ± 0.13 0.34 ± 0.15
Transformer Softmax 0.67 ± 0.08 0.20 ± 0.10 0.54 ± 0.11 0.05 ± 0.10 0.72 ± 0.11 0.33 ± 0.20
Transformer Sparsemax 0.44 ± 0.08 0.21 ± 0.09 0.47 ± 0.10 0.14 ± 0.15 0.67 ± 0.12 0.30 ± 0.23

gŷ(I) Dŷ(I) gŷ(I) Dŷ(I) gŷ(I) Dŷ(I)
BiLSTM Softmax 0.77 ± 0.05 0.79 ± 0.05 0.78 ± 0.15 0.70 ± 0.19 0.80 ± 0.13 0.49 ± 0.17
BiLSTM Sparsemax 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.06 0.99 ± 0.01 0.97 ± 0.06 0.98 ± 0.04
Transformer Softmax 0.76 ± 0.04 0.1 ± 0.07 0.62 ± 0.13 0.05 ± 0.11 0.89 ± 0.07 0.16 ± 0.18
Transformer Sparsemax 0.92 ± 0.05 0.19 ± 0.09 0.76 ± 0.15 0.15 ± 0.16 0.88 ± 0.11 0.25 ± 0.23

Table 6: Mean Kendall’s τ correlation of attention with gradient-based gŷ and LOO-based Dŷ feature importance
of the input tokens x and intermediate representations I . Green numbers are standard deviations.

Figure 4: Correlation between the attention distribution
and Leave-One˙Out FI measures. We see a stronger cor-
relation between attention and intermediate representa-
tion FI than input FI across all models.


