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Abstract

Across languages, multiple consecutive adjec-
tives modifying a noun (e.g. “the big red dog”)
follow certain unmarked ordering rules. While
explanatory accounts have been put forward,
much of the work done in this area has re-
lied primarily on the intuitive judgment of na-
tive speakers, rather than on corpus data. We
present the first purely corpus-driven model of
multi-lingual adjective ordering in the form of
a latent-variable model that can accurately or-
der adjectives across 24 different languages,
even when the training and testing languages
are different. We utilize this novel statistical
model to provide strong converging evidence
for the existence of universal, cross-linguistic,
hierarchical adjective ordering tendencies.

1 Introduction

Most native speakers of a language would agree
that certain adjective orderings are preferable to
others. For instance, in English, “the big red dog”
sounds natural while “the red big dog” sounds very
awkward. Similar ordering preferences have been
found to apply universally across the languages in
the world: for example, the adjective for “big” in
most languages tends to be farther away from the
noun, syntactically, than “red.” For an overview of
these phenomena, see Cinque (2010).

There are many explanatory accounts of cross-
linguistic adjective ordering in the linguistics lit-
erature, the most popular being hierarchical ten-
dencies based on semantic categories of adjectives
(Dixon, 1982; Sproat and Shih, 1991; Cinque, 1994,
2010). For instance, Sproat and Shih (1991) and
Cinque (2010) note that adjectives describing SIZE

tend to be placed further from the noun than those
describing COLOR in most languages. However,
most of these studies have relied primarily on the
judgment of native speakers rather than on cor-
pus data, and those corpus-based models that do

exist have focused exclusively on English (Shaw
and Hatzivassiloglou, 1999; Malouf, 2000; Wulff,
2003; Mitchell, 2009; Dunlop et al., 2010; Mitchell
et al., 2011; Hill, 2012; Scontras et al., 2017; Hahn
et al., 2018; Futrell et al., 2020). In this paper, we
make use of tools and techniques from statistical
modeling to provide strong converging evidence
supporting a hierarchical theory of cross-linguistic
adjective ordering.

Specifically, we present a novel interpretable,
multi-lingual, latent-variable model of adjective
ordering that directly enforces a hierarchy of se-
mantic classes and is trained entirely using cor-
pus data. We empirically show that our model
accurately orders adjectives across 24 different lan-
guages, even when tested on languages that it has
not been trained on. In doing so, we demonstrate
the existence of universal, cross-linguistic, hierar-
chical tendencies in adjective ordering.

2 Adjective Ordering

Consider the following English phrases, taken from
Teodorescu (2006):

(1) A beautiful small black purse

(2) a. # A beautiful black small purse1

b. # A small beautiful black purse
c. # A small black beautiful purse

None of these phrases are ungrammatical, yet most
native English speakers would contend that only (1)
is correct in most contexts. Further complicating
the phenomenon, there are many unmarked cases
where ordering rules can be broken without hurting
correctness. For example, now consider:

(3) A brown Chinese bear

(4) A Chinese [brown bear]2

1# denotes an infelicitous phrase
2[ ] denotes an adjective-noun collocate
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Here, (3) presents the most natural ordering of
“brown” and “Chinese” (to illustrate this, substi-
tute “bear” with “house”), but (4) is also correct
because a “brown bear” is an adjective–noun collo-
cate. For a more detailed discussion on adjective
ordering exceptions, see Teodorescu (2006).

2.1 Common Theories

All adjective ordering theories put adjectives on a
scale. What differentiates them is the granularity
of that scale and the metric used to rank adjectives.
This section describes the most notable theories,
which appeal to a hierarchy of semantic classes, in-
herentness, modification strength, and subjectivity.
We adopt the hierarchical approach in this paper
because it is more general and so allows a closer fit
to the data. While the more functional explanations
(i.e. inherentness, modification strength, and sub-
jectivity) might allow us to derive a hierarchy from
something more fundamental, current theories only
appear to account for a portion of adjective order-
ing preferences.

Hierarchical theories. Hierarchical theories of
adjective ordering posit that each adjective belongs
to a class of semantically similar adjectives, and
that these classes follow a rigid order. Several the-
ories describing how prenominal adjective classes
are ordered have been suggested, most famously
Cinque (2010)’s: VALUE → SIZE → SHAPE →
COLOR→ PROVENANCE. Dixon (1982) observes
that postnominal adjectives follow the opposite or-
der as do prenominal ones. To illustrate, consider
the following phrase in both English and Spanish:

(5) An ugly black shirt

(6) Una
a

camisa
shirt

negra
black

fea
ugly

Inherentness. The inherentness theory (Whorf,
1945) posits that adjectives fall into two broad cate-
gories: adjectives that describe inherent properties
of nouns—such as color, material, physical state,
provenance, breed, nationality, function, use, etc.—
and adjectives that describe non-inherent proper-
ties, and that inherent adjectives are usually placed
closer to the noun than non-inherent ones.

Modification strength. Vecchi et al. (2013) ap-
ply a compositional distributional semantics ap-
proach to studying English adjective–adjective–
noun phrases, and note that in correctly ordered
phrases, the adjective closer to the noun contributes

more to the meaning of the phrase than does the
adjective further from the noun. For instance, “dif-
ferent architectural style” is more similar to “archi-
tectural style” than it is to “different style”.

Subjectivity. The subjectivity theory (Hill, 2012;
Scontras et al., 2017; Hahn et al., 2018) ranks ad-
jectives by subjectivity on a continuous scale and
posits that the less subjective an adjective is, the
closer it should be placed to the noun.

2.2 Binomial Ordering
A closely related phenomenon to adjective order-
ing is binomial ordering. Binomials are pairs of
words joined by a conjunction, such as “salt and
pepper” or “ball and chain”. Adjective ordering
and binomial ordering have been studied in similar
ways, and have in many cases been found to behave
similarly (Benor and Levy, 2006; Copestake and
Herbelot, 2011; Ivanova and Levy, 2018).

3 A Latent-Variable Model

A natural mathematical formalization of adjective
ordering is as a latent-variable model. A latent-
variable model relates a set of observable variables
to a set of unobservable (latent) ones. Here, we
observe how adjectives are ordered in corpus data
and from this infer an ordered set of latent adjective
classes. This allows us to determine the ordering
of an arbitrary set of adjectives by referencing their
class memberships and the class order.

Like other latent-variable models, such as latent
semantic analysis (Dumais et al., 1988) and latent
Dirichlet allocation (Blei et al., 2003), our model
aims to fit the data using a lower-dimensional space.
In particular, the number of adjective classes is
much smaller than the size of the vocabulary or the
size of the pre-trained adjective embeddings.

3.1 Ordering English Adjectives
Consider an English noun phrase where k unique
adjectives a = {a1, . . . , ak} modify a noun n, and
k ≥ 2. Let C be an ordered set of latent adjective
classes labeled [1, 2, . . . , |C|] and let d be the di-
mensionality of our pre-trained word embedding
vectors e(·). Our goal is to simultaneously learn a
mapping V ∈ Rd×|C| from adjective embeddings
to latent classes and learn an interaction matrix
W ∈ R|C|×|C| which reflects the preferred ordering
of those classes.

We develop a probabilistic model of each of the
k! possible permutations π of a as in eq. (1), which



4018

factorizes the distribution in terms of the latent
classes c (a k-length tuple of class labels, one per
adjective in the permutation). The ith class, ci,
denotes the class assigned to the ith adjective, ai.

p(π | a) =
∑
c∈Ck

p(π | c)
k∏
i=1

p(ci | ai) (1)

Given latent classes, the distribution over permu-
tations is given in eq. (2), using the scoring function
in eq. (3), where πi indexes the adjective in the ith

position of the permutation, and so cπi is the latent
class in the ith position. Thus, eq. (3) sums the or-
dering preference scores between each consecutive
pair of adjective classes in the permutation, using
the pairwise preferences in W. Using these scores,
eq. (2) produces a distribution, normalizing over
the set of all permutations Sk:

p(π | c) = exp score(π, c)∑
π′∈Sk exp score(π

′, c)
(2)

score(π, c) =
k−1∑
i=1

Wcπi ,cπi+1
(3)

Finally, the distribution over latent classes is
obtained with V, making use of a pre-trained em-
bedding e(ai) for each adjective:

p(ci | ai) = softmax (Ve(ai))ci (4)

To summarize, we compute the probability of
each permutation by considering all possible as-
signments of latent classes. The probability of a
permutation is a weighted sum (eq. (1)) of normal-
ized scores (eqs. (2) and (3), using W), weighted
according to the likelihood of the latent classes
(eq. (4), using V). Both W and V are learned
through batch gradient descent.

To predict an ordering, we enumerate all per-
mutations of a, compute their probabilities as de-
scribed, and pick the highest scoring one.

3.2 Enforcing a Total Ordering
Hierarchical theories imply a total ordering of ad-
jective classes. This means that the class order is
antisymmetric, transitive, and a connex relation.
While it is likely that our model learns a (predomi-
nantly) total ordering, we cannot be absolutely sure
that it does. To remedy this, we enforce a total or-
dering of categories by modifying our model such
that W is no longer learned, but is instead fixed as
a matrix with ones above the diagonal and zeroes

elsewhere. We will refer to this as an off-upper-
triangular matrix. To illustrate how this enforces a
total ordering, recall that each element Wij of W
represents a preference for ordering class i before
class j. Then, given a |C|× |C| off-upper-triangular
matrix of ones and zeroes:

0 1 1 . . . 1
0 0 1 . . . 1
0 0 0 . . . 1
...

...
...

. . .
...

0 0 0 . . . 0


Class 1 precedes classes 2, 3, . . . , |C|; class 2 pre-
cedes classes 3, 4, . . . , |C|; etc. To distinguish be-
tween the previously described variant where W
is learned and this one, we will refer to the former
as the English Learned-W model (EL) and the
latter as the English Fixed-W model (EF).

3.3 Handling Postnominal Adjectives
In English, noun phrases consisting of a noun and
one or more adjectives always place the adjectives
before the noun. However, this is not the case
in other languages, where the adjectives can be
placed before, after, or both before and after the
noun. As such, we need to modify our model to
accommodate such structures.

With the EL and EF models, we use a single
interaction matrix W to score a permutation π
of the adjectives a = {a1, . . . , ak} that modifies
n. But if we must now support adjectives both
before and after the noun, we must decompose a

into two sets: a(left) = {a(left)1 , . . . , a
(left)
j } and

a(right) = {a(right)1 , . . . , a
(right)
` }, j ≥ 2 or ` ≥ 2.

Then, we can use two separate W matrices, W(left)

and W(right), to score the adjectives that appear
directly to the left and right of n, respectively:

score(π, c) = score(π(left), c(left))

+ score(π(right), c(right)) (5)

Conveniently, maximizing score(π, c) is equiv-
alent to maximizing score(π(left), c(left)) and
score(π(right), c(right)) independently.

As with English, we present two variants of
the multi-lingual model, one where W(left) and
W(right) are learned and one where they are fixed.
We will refer to the former as the Multi-lingual
Learned-W model (ML) and the latter as the
Multi-lingual Fixed-W model (MF). The pri-
mary challenge in implementing MF is deciding



4019

what W(right) should be. While W(left) can sim-
ply be an off-upper-triangular matrix, as W is in
EF, we need an appropriate matching W(right) that
captures the different treatment given to prenom-
inal and postnominal adjectives. Ultimately, we
adopt Dixon (1982)’s observation that postnominal
adjectives follow the opposite order as do prenom-
inal ones, and fix W(right) as a matrix with ones
below the diagonal and zeroes elsewhere, i.e. an
off-lower-triangular matrix.

3.4 Multi-lingual Word Embeddings

In order to predict adjective order across languages,
we need a joint model for word representations.
We use multi-lingual fastText (Bojanowski et al.,
2017) Wikipedia supervized word embeddings of
dimensionality d = 300 aligned in a single vector
space (MUSE), provided by Conneau et al. (2018).

4 Data

This section describes our English, multi-lingual,
and additional languages datasets.

4.1 English Dataset

Multi-adjective noun phrases are surprisingly rare;
analyzing 54,478 English noun phrases from the
Universal Dependencies (UD) project (Nivre et al.,
2016; Zeman et al., 2019), we find that only 745 of
them (1.37%) contain two or more adjectives. As
such, we require a large corpus to train our model.
The data comprising the English dataset comes
from ukWaC (Baroni et al., 2009), an enormous
(>2 billion words) corpus of automatically tagged
and dependency-parsed online text from the .uk
domain. Unfortunately, ukWaC contains a lot of
low-quality data, including non-English characters,
incorrect tokenization, and part-of-speech errors.

We first extract all noun phrases where a noun is
modified by multiple consecutive adjectives, i.e. all
phrases consisting of an ordered set of consecutive
adjectives [a1, . . . , ak], k ≥ 2, directly preceding a
noun n. We then disqualify all noun phrases where
more than six adjectives modify a noun, because
we find that such samples tend to consist of bad
data, such as “. . . . . . .” annotated as a sequence
of adjectives. Finally, MUSE fastText embeddings
are only released as word–embedding dictionar-
ies, unlike standard fastText embeddings which are
built from substrings of characters. Thus, unlike
conventional fastText embeddings, they are unable
to infer embeddings for unseen words. And so, we

Split by Token
# Phrases # Adj Types

Training 10,000 2,695
Testing 1,000 806
Total 11,000 2,786

Split by Type
# Phrases # Adj Types

Training 9,165 2,514
Testing 1,835 890
Total 11,000 2,786

Table 1: English dataset summary.

need to disqualify all noun phrases which include
adjectives not in these dictionaries.

We then randomly select 12,000 phrases. Of
these, 1,000 are set aside as a development set. The
remaining 11,000 phrases are split in two different
ways: by token and by type. Splitting by token is
done by randomly picking 10,000 phrases to form
the training set and letting the remaining 1,000
phrases form the testing set. Splitting by type is
done by randomly picking 90% of the unique ad-
jective types in the data, letting all phrases where
all their adjectives belong to this 90% form the
training set, and letting the remaining phrases form
the testing set. This ensures that every phrase in
the testing set will contain at least one adjective
not present in the training set. A summary of the
English dataset can be found in Tab. 1.

4.2 Multi-Lingual Dataset

Because our multi-lingual models are trained on
multiple languages at once, we do not need as
many data per language and can afford to use much
smaller corpora. We obtain the non-English data
used to train ML and MF from UD. UD provides
treebanks with annotated dependencies in many
languages, which we use to determine which ad-
jectives are modifying which nouns. The English
portion of this dataset re-uses the ukWaC corpus.

For each language that we choose to include,
we once again extract all noun phrases where
a noun is modified by multiple consecutive ad-
jectives. This time, however, we need to ac-
count for postnominal adjectives as well. We
extract all phrases where an ordered set of con-
secutive adjectives [a(left)1 , . . . , a

(left)
j ], j ≥ 2, pre-

cedes n or an ordered set of consecutive adjec-
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Czech
# Phrases # Adj Types

Training 5,000 2,065
Testing 1,000 820
Total 6,000 2,245

English
# Phrases # Adj Types

Training 5,000 1,930
Testing 1,000 806
Total 6,000 2,092

German
# Phrases # Adj Types

Training 5,000 1,835
Testing 1,000 743
Total 6,000 2,040

Russian
# Phrases # Adj Types

Training 5,000 1,814
Testing 667 602
Total 5,680 1,920

Table 2: Multi-lingual dataset summary.

tives [a
(right)
1 , . . . , a

(right)
` ], ` ≥ 2, follows n. We

then once again disqualify all noun phrases which
include adjectives not in the MUSE fastText dic-
tionary. From the remaining pool, we randomly
select 5,000 phrases to form our training set and
1,000 phrases to form our testing set, except for
Russian, where we only have 667 phrases remain-
ing to construct the testing set. A summary of the
multi-lingual dataset can be found in Tab. 2.

Criteria for Choosing Languages. We have
two criteria for choosing languages for this dataset.
Firstly, the language must have MUSE fastText
embeddings, as we require embeddings aligned in
a common vector space. Secondly, the UD cor-
pora for the language must contain over 5,000 us-
able multi-adjective noun phrases to provide a suf-
ficiently large training set.

4.3 Additional Languages Dataset

A glaring limitation of our multi-lingual dataset
is that it is not typologically diverse: it contains
two Germanic and two Slavic languages. Most
critically, we note that in all four of its languages,
adjectives predominantly precede the noun. While

Language # Phrases # Adj Types

Bulgarian 584 508
Catalan 503 515
Croatian 922 666
Danish 118 133
Dutch 321 328
Estonian 509 503
Finnish 250 254
French 621 612
Greek 104 132
Hebrew 147 170
Hungarian 228 321
Italian 397 419
Norwegian 756 543
Polish 408 508
Portuguese 222 275
Slovak 277 348
Slovenian 460 478
Spanish 1,000 947
Swedish 164 188
Ukrainian 373 472

Table 3: Additional languages dataset summary.

we are unable to train on more languages due to a
lack of data, there is no reason why we cannot test
on them. The additional languages dataset consists
of phrases from 20 additional MUSE-supported
languages using their UD corpora and the same pre-
processing pipeline as described in §4.2. Among
these are three Uralic languages (Estonian, Finnish,
Hungarian) and one Afro-Asiatic language (He-
brew), while the rest are Indo-European. We do not
include Arabic because its MUSE fastText embed-
dings seem to be incorrectly formatted. We also
choose not to include Indonesian, Macedonian, Ro-
manian, Turkish, or Vietnamese because they have
too few (<50) phrases to construct a representa-
tive testing set. Meta-data describing the additional
languages dataset can be found in Tab. 3.

5 Experimental Details and
Hyperparameters

We split our experiments into English experiments
(§6) and transfer learning experiments (§7). All
of our models are trained for a single epoch of the
relevant training data with a learning rate of 0.1 and
a batch size of 32; we found a single epoch more
than sufficient for our purposes in preliminary ex-
perimentation. We also set |C| = 15 and d = 300
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EL EF Random

Token split 0.843 0.823 0.483
Type split 0.836 0.829 0.482

Table 4: English accuracy on different data splits. Com-
paring the two models on the same data split, the results
do not differ significantly.

for all models. We report the exact expectation
of the random baseline. All significance testing is
done with permutation tests following Dror et al.
(2018), using 10,000 random permutations and sig-
nificance at α = 0.05. All differences between
model performance and the corresponding random
baselines are significant with p < 0.01.

6 English Experiments

Our English experiments serve to demonstrate the
basic correctness of the model. We also provide a
qualitative analysis of EF.

6.1 Predictive Accuracy

We train each of the English models on the token
and type split English data described in §4.1. The
token split allows us to evaluate the basic predic-
tive accuracy of EL and EF, while the type split
allows us to evaluate how well the EL and EF mod-
els generalize to unseen adjective types. Results
are detailed in Tab. 4. We achieve high accuracy on
both the token split and type split data, demonstrat-
ing the correctness of the model. Importantly, our
strong performance on the type split data demon-
strates that EL and EF generalize well to unseen
adjective types. We also observe that EL and EF re-
sults are similar, suggesting that adjective ordering
preferences naturally tend towards a total ordering,
since learning W did not significantly improve re-
sults.

6.2 Validating Use of fastText

We now address a potential confounding influence
of the pre-trained fastText embeddings. We are
concerned that adjective ordering information may
be pre-baked into the MUSE fastText embeddings
that we use, since the embeddings were trained on
text where adjectives were correctly ordered. To
check this, we retrain two small fastText models on
a subset of 12,500 sentences from ukWaC. The first
model is trained on these sentences as they are, and
the second model is trained on a version of these

EL EF Random

Scrambled 0.791 0.797 0.483
Unscrambled 0.784 0.797 0.483

Table 5: English accuracy with scrambled and unscram-
bled fastText vectors. Comparing different vectors for
the same model, the results do not differ significantly.

sentences where strings of consecutive adjectives
have been randomly scrambled. We then retrain the
EL and EF models on the token split data with both
the scrambled and unscrambled fastText vectors.
Results are detailed in Tab. 5.

That neither pair of scrambled and unscrambled
results differs significantly indicates that adjective
ordering information is not coming from the fast-
Text embeddings. Otherwise, the unscrambled
model should have outperformed the scrambled
model. Due to the computational expense of re-
training multi-lingual fastText, we do not repeat
this validation with the multi-lingual models.

6.3 Qualitative Evaluation of EF

Perhaps the most convenient property of the EF
model is that it is fully interpretable. We are able
to, for any given adjective, extract information
about which class it belongs to, and know from
the model’s design that classes follow a total or-
dering such that class 1 precedes class 2 precedes
class 3, and so on. In this experiment, we first
qualitatively analyze the 177 testing phrases in the
token split data that EF orders incorrectly, making
generalizations about what kinds of mistakes the
model makes. We then make a qualitative compar-
ison between the hierarchy that EF learns and the
hierarchy proposed by Cinque (2010).

Types of Mistakes. Two types of cases account
for most of EF’s mis-orderings. Firstly, many
of the mis-ordered testing phrases deviate from
typical adjective ordering tendencies because they
contain adjective–noun collocates. Such phrases
include “Italian [secret service]”, “modern [good
practice]”, and “Japanese [popular culture]” (to il-
lustrate how these are atypical, consider “secret Ital-
ian meatballs”, “good modern ethics”, and “popular
Japanese restaurant”). We note that this tends to
occur with adjectives that describe PROVENANCE:
these, while typically placed near the noun, are
also often prepended to collocates. We are largely
unsurprised by this, as it mirrors the intuitive obser-
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vations made regarding adjective-noun collocates
illustrated in (3) and (4). An interesting direction
for future work might be to model the likelihood
of an adjective and a noun forming a collocate and
integrate that into our current model.

Secondly, we observe that EF often mis-orders
phrases containing adjectives describing ORDER

(e.g. “next”, “first”, “other”) and QUANTITY

(e.g. “few”, “many”). Examining EF’s adjective-
class layer, we discover that it has placed these
words together in the same class, when intuitively
ORDER adjectives should precede QUANTITY ad-
jectives (e.g. “next few lessons”, “first many part-
ners”). Further experimentation would be neces-
sary to determine why EF has done this, but we sus-
pect intuitively that it may be because ORDER and
QUANTITY adjectives are relatively small classes
and are semantically similar. If they occur more
often next to other classes than next to each other,
there is only a weak pressure for the model to as-
sign these words to distinct classes. A more rigor-
ous error analysis would require a comprehensive
dictionary of adjectives tagged with their seman-
tic classes.3 Unfortunately, constructing such a
dictionary is beyond the scope of this paper.

Comparison with Cinque’s Hierarchy. We
take the 100 most common adjectives in the En-
glish dataset and use EF’s adjective-class layer to
determine their class memberships. We then com-
pare these classes and their relative orderings to
those proposed by Cinque (2010): VALUE→ SIZE

→ SHAPE→ COLOR→ PROVENANCE.
We observe that EF follows most of Cinque’s

rules. Most notably, EF clearly learns categories
of adjectives describing SIZE, COLOR and PROVE-
NANCE, and additionally learns that SIZE precedes
COLOR precedes PROVENANCE. We perform a
small-scale statistical verification of this observa-
tion by hand-constructing a testing set of Cinquean
phrases and using it to evaluate the similarity of
EF’s and Cinque’s predictions. To do this, we first
select five common adjectives from each of the five
Cinquean categories. We then construct a testing
set using pairs of only these 25 adjectives based on
Cinque’s hierarchy. This gives us

(
5
2

)
∗ 52 = 250

testing phrases. Since these are all pairs, the ex-
pected random baseline is simply 50%.

We then evaluate the predictive accuracy of EF
on the Cinquean testing phrases. EF achieves an

3Specifically, these would have to be semantic classes
comparable with those learned by EF.

accuracy of 0.960 with p < 0.01, suggesting that
EF agrees with most of Cinque’s rules. Importantly,
this does not mean that EF is 96% accurate at or-
dering adjectives, but only that EF agrees with 96%
of Cinque’s predictions on our test set. As dis-
cussed, many of EF’s mistakes on real corpus data
are attributable to adjective ordering exceptions
like adjective-noun collocates, which Cinque’s hi-
erarchy does not address either.

While EF follows most of Cinque’s existing
rules, we also observe that EF learns additional
rules not described by Cinque. For instance, EF
seems to learn a category of adjectives describing
TYPE, which follows adjectives describing PROVE-
NANCE and contains adjectives such as “financial”,
“technical”, and “scientific”. This seems intuitively
correct—to illustrate, consider “Russian financial
burden”, “German technical wonder”, and “African
scientific achievement”. This suggests that an ac-
curate adjective ordering hierarchy may need to be
more complex than described by Cinque. In par-
ticular, it seems that Cinque’s adjective classes are
too broad. An alternate interpretation is that TYPE

adjectives are defined by being capable of forming
adjective-noun collocates with most of the nouns
that they commonly modify.

But we must emphasize that this analysis is still
anecdotal. The noted similarities and differences
are difficult to quantify, and as far as we are aware
there is no large-scale corpus of adjectives tagged
with their Cinquean categories to enable a more re-
liable quantitative approach; we would ideally want
such a corpus in a large number of languages. For
now, we simply suggest that while Cinque’s hierar-
chy captures many truths about adjective ordering,
it does not quite grasp the entire picture.

Comparison with Functional Theories The
bulk of the existing work on statistically mod-
elling adjective ordering can be broadly separated
into two categories: that which is theoretically-
motivated (e.g. Wulff, 2003; Futrell et al., 2020),
and that which is empirically-motivated (e.g. Mal-
ouf, 2000). The theoretically-motivated approach
attempts to deduce the source of adjective order-
ing preferences by fitting adjective ordering data
to pre-determined features derived from more fun-
damental functional pressures. The empirically-
motivated approach attempts to fit adjective or-
dering data as accurately as possible by learn-
ing features from data. This paper falls into the
empirically-motivated category because a hierar-
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ML (Learned W) MF (Fixed W)
Random

Transfer Mono-ling Joint Transfer Mono-ling Joint

Czech 0.851†‡∗ 0.886†∗ 0.899 0.817‡∗ 0.831†∗ 0.888 0.483
English 0.803†‡ 0.820 0.820 0.800 0.811 0.808 0.487
German 0.695†‡∗ 0.802 0.807 0.732†‡∗ 0.796 0.807 0.488
Russian 0.840†‡ 0.893† 0.911 0.859‡ 0.873† 0.892 0.485

Table 6: Multi-lingual accuracy. A † denotes that a result differs significantly from the result to its right. A ‡ denotes
that a result differs significantly from the result two to its right. A ∗ denotes that a result differs significantly from
its ML/MF counterpart. The terminology used to describe the columns is defined in §7.1.

chical model like ours or Cinque’s is in no way
functional – it postulates that a particular hierar-
chy exists but does not explain why it exists in that
particular order. Importantly, this means that a hi-
erarchical theory is not necessarily at odds with
the functional theories. Rather, it is very possible
that one or more functional theories might serve to
explain the empirically observed hierarchies.

Interestingly, there seems to be a gap in predic-
tive accuracy between theoretically-motivated and
empirically-motivated models. For example, Wulff
(2003) and Futrell et al. (2020) achieve accuracies
in the low 70s, while Malouf (2000) and this paper
achieve accuracies in the 80s. While these results
are hard to compare directly as they were achieved
on different datasets, this suggests that there are
some ordering preferences not yet captured by any
existing functional theory.

7 Transfer Learning Experiments

An important claim of the hierarchical theory for
adjective ordering is that the hierarchy applies uni-
versally across languages. If this is the case, then
we should be able to accurately order adjectives
from languages that we have not trained on.

7.1 Predictive Accuracy
We evaluate each of the multi-lingual models on the
multi-lingual dataset in three different scenarios.
The first scenario (henceforth the mono-lingual
scenario) addresses single-language training and
testing. For this, we train one model on each of the
four languages in the dataset by itself. Each model
is then tested on the language that it was trained on.
The second scenario (henceforth the transfer sce-
nario) addresses the model’s ability to generalize
to unseen languages by holding out the language
in question. For this, we train four models, each on
every language but the one we want to test (e.g. on

Czech, English, German, but not Russian). Each
model is then tested on the language that was held
out during training. The third scenario (henceforth
the joint scenario) addresses the potential for aug-
menting single-language training with additional
data from other languages. For this, we train a
single model on all four languages together. The
model is then tested on each of the four languages
individually. Results are detailed in Tab. 6.

We observe that the model performs much better
than chance on the transfer scenario. This confirms
the theory that universal hierarchical adjective or-
dering tendencies generalize across languages. Oth-
erwise, we would expect chance level performance.
We also observe that for all languages, performance
on the joint scenario is better than or equal to per-
formance on the mono-lingual scenario, which is
in turn better than or equal to performance on the
transfer scenario. This upward trend of transfer
≤ mono-lingual ≤ joint suggests that while train-
ing on additional languages can help performance,
the most important single factor is to train on the
language that is being tested. In fact, given that
the multi-lingual models did not achieve the same
performance on the joint scenario as the English
models did on the English dataset (§6.1), we pre-
dict that performance on the mono-lingual scenario
would have been the best for all languages if there
had been more training data. Finally, we observe
that for the most part, corresponding ML and MF
results do not differ significantly, suggesting once
again that adjective ordering preferences tend to-
wards a total ordering. Taken together, these obser-
vations suggest that a universal hierarchy of adjec-
tive ordering tendencies exists, though individual
languages may also feature additional unique ten-
dencies not shared by the others.
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Language Family Accuracy Random

Bulgarian Slavic 0.851 0.487
Catalan Romance 0.763 0.494
Croatian Slavic 0.850 0.487
Danish Germanic 0.791 0.492
Dutch Germanic 0.819 0.488
Estonian Finnic 0.673 0.493
Finnish Finnic 0.702 0.493
French Romance 0.802 0.490
Greek Greek 0.832 0.490
Hebrew Semitic 0.868 0.493
Hungarian Ugric 0.839 0.466
Italian Romance 0.740 0.493
Norwegian Germanic 0.797 0.480
Polish Slavic 0.779 0.500
Portuguese Romance 0.722 0.491
Slovak Slavic 0.770 0.475
Slovenian Slavic 0.818 0.485
Spanish Romance 0.771 0.491
Swedish Germanic 0.769 0.492
Ukrainian Slavic 0.833 0.487

Table 7: MF accuracy on additional languages.

7.2 Testing on Additional Languages
To build confidence that our findings truly general-
ize widely across typologically diverse languages,
we train the MF model on Czech, English, German,
and Russian, and test it on each of the languages
in the additional languages dataset. We choose to
test only the MF model as the ML model would
not have the data to learn a correct W(right) ma-
trix (as Czech, English, German, and Russian tend
not to have postnominal adjectives) and would thus
understandably under-perform on the languages
which predominantly feature postnominal adjec-
tives (i.e. Catalan, French, Hebrew, Italian, Por-
tuguese, and Spanish). This experiment is concep-
tually identical to the multi-lingual transfer sce-
nario. Results are detailed in Tab. 7 and visualized
in Fig. 1.

MF performs much better than chance on every
language, with similar accuracies as those achieved
in the transfer scenario. This gives us confidence
that the conclusions drawn in §7.1 do generalize
widely across typologically diverse languages.

8 Conclusion

We built an interpretable, multi-lingual latent-
variable model of hierarchical adjective order-
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Figure 1: MF accuracy on additional languages.

ing that directly enforces a hierarchy of seman-
tic classes and is trained entirely using corpus
data. We found that our fixed-W variants, which
enforce total orderings of semantic classes, per-
form similarly to our learned-W variants, suggest-
ing that adjective ordering preferences naturally
tend towards total orderings. We also found that
our model is able to accurately order adjectives
from 24 different languages, regardless of whether
it was directly trained on them, although it does
benefit from having been trained on the language
on which it is tested. Interestingly, we were able
to achieve high predictive accuracy on languages
predominantly featuring postnominal adjectives
(e.g. French, Spanish), despite having only trained
on languages predominantly featuring prenominal
ones (Czech, English, German, Russian), by simply
reversing the prenominal adjective ordering rules
for postnominal ones.

In summary, our work presents converging evi-
dence that adjectives exhibit universal hierarchical
ordering tendencies, with the added observations
that individual languages feature additional unique
tendencies not shared by others, and that adjective
ordering is symmetric with respect to the noun.
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Celano, Slavomı́r Čéplö, Savas Cetin, Fabri-
cio Chalub, Jinho Choi, Yongseok Cho, Jayeol
Chun, Alessandra T. Cignarella, Silvie Cinková,
Aurélie Collomb, Çağrı Çöltekin, Miriam Con-
nor, Marine Courtin, Elizabeth Davidson, Marie-
Catherine de Marneffe, Valeria de Paiva, Elvis
de Souza, Arantza Diaz de Ilarraza, Carly Dicker-
son, Bamba Dione, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet Dwivedi,

Hanne Eckhoff, Marhaba Eli, Ali Elkahky, Binyam
Ephrem, Olga Erina, Tomaž Erjavec, Aline Eti-
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Florinel Hociung, Petter Hohle, Jena Hwang,
Takumi Ikeda, Radu Ion, Elena Irimia, O. lájı́dé
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A Reproducibility

In the interest of fostering reproducibility, we pro-
vide the following additional information about our
data, models, and computing infrastructure.

A.1 Data
We use Universal Dependencies (UD) 2.5 and
ukWaC, which can be found at http://hdl.

handle.net/11234/1-3105 and https://wacky.

sslmit.unibo.it/doku.php, respectively. Note
that UD has since been updated to version 2.6.

A.2 Model Parameters and Runtime
The learned-W models (EL, ML) have 2 ∗ |C|2 +
d∗ |C| = 4, 950 learnable parameters. The fixed-W
models (EF, MF) have d ∗ |C| = 4, 500 learnable
parameters. The time taken to train each model
varies based on the number of training samples—
as a rule of thumb, training the learned models
takes about 1.5-2 hours per 10,000 samples, while
training the fixed models takes about 1 hour per
10,000 samples. Training all of the model variants
necessary to reproduce this paper in full takes about
24 hours. Testing either model type takes only
several minutes per 1,000 samples.

A.3 Computing Infrastructure
All our development, training, and testing was done
on a personal computer with the following specifi-
cations:

• Operating System: Windows 10 Pro (64-bit)

• CPU: Intel Core i7-7700k @ 4.20 GHz

• GPU: None

• RAM: 64GB DDR4

• Storage Used: Approximately 200GB

A.4 Other Notes
We did not use validation sets as we saw little value
to extensively tuning the model, since we were
trying to explore the properties of a natural phe-
nomenon rather than aiming to achieve the highest
possible accuracy. All reported results are from the
first time each model variant was tested.
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