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Abstract

Can advances in NLP help advance cogni-
tive modeling? We examine the role of artifi-
cial neural networks, the current state of the
art in many common NLP tasks, by return-
ing to a classic case study. In 1986, Rumel-
hart and McClelland famously introduced
a neural architecture that learned to trans-
duce English verb stems to their past tense
forms. Shortly thereafter, Pinker and Prince
(1988) presented a comprehensive rebuttal of
many of Rumelhart and McClelland’s claims.
Much of the force of their attack centered
on the empirical inadequacy of the Rumel-
hart and McClelland (1986) model. Today,
however, that model is severely outmoded.
We show that the Encoder-Decoder network
architectures used in modern NLP systems
obviate most of Pinker and Prince’s criti-
cisms without requiring any simplication of
the past tense mapping problem. We suggest
that the empirical performance of modern
networks warrants a reëxamination of their
utility in linguistic and cognitive modeling.

1 Introduction

In their famous 1986 opus, Rumelhart and Mc-
Clelland (R&M) describe a neural network capa-
ble of transducing English verb stems to their past
tense. The strong cognitive claims in the article
fomented a veritable brouhaha in the linguistics
community that eventually led to the highly influ-
ential rebuttal of Pinker and Prince (1988) (P&P).
P&P highlighted the extremely poor empirical per-
formance of the R&M model, and pointed out a
number of theoretical issues with the model, that
they suggested would apply to any neural network,
contemporarily branded connectionist approaches.
Their critique was so successful that many linguists
and cognitive scientists to this day do not consider
neural networks a viable approach to modeling lin-
guistic data and human cognition.

In the field of natural language processing (NLP),

however, neural networks have experienced a re-
naissance. With novel architectures, large new
datasets available for training, and access to exten-
sive computational resources, neural networks now
constitute the state of the art in a many NLP tasks.
However, NLP as a discipline has a distinct prac-
tical bent and more often concerns itself with the
large-scale engineering applications of language
technologies. As such, the field’s findings are not
always considered relevant to the scientific study
of language, i.e., the field of linguistics. Recent
work, however, has indicated that this perception
is changing, with researchers, for example, prob-
ing the ability of neural networks to learn syntactic
dependencies like subject-verb agreement (Linzen
et al., 2016).

Moreover, in the domains of morphology and
phonology, both NLP practitioners and linguists
have considered virtually identical problems, seem-
ingly unbeknownst to each other. For example,
both computational and theoretical morphologists
are concerned with how different inflected forms
in the lexicon are related and how one can learn
to generate such inflections from data. Indeed, the
original R&M network focuses on such a genera-
tion task, i.e., generating English past tense forms
from their stems. R&M’s network, however, was
severely limited and did not generalize correctly
to held-out data. In contrast, state-of-the art mor-
phological generation networks used in NLP, built
from the modern evolution of Recurrent Neural
Networks (RNNs) explored by Elman (1990) and
others, solve the same problem almost perfectly
(Cotterell et al., 2016). This level of performance
on a cognitively relevant problem suggests that it
is time to consider further incorporating network
modeling into the study of linguistics and cognitive
science.

Crucially, we wish to sidestep one of the issues
that framed the original debate between P&P and
R&M—whether or not neural models learn and
use ‘rules’. From our perspective, any system that



picks up systematic, predictable patterns in data
may be referred to as rule-governed. We focus
instead on an empirical assessment of the ability
of a modern state-of-the-art neural architecture to
learn linguistic patterns, asking the following ques-
tions: (i) Does the learner induce the full set of
correct generalizations about the data? Given a
range of novel inputs, to what extent does it apply
the correct transformations to them? (ii) Does the
behavior of the learner mimic humans? Are the
errors human-like?

In this work, we run new experiments examin-
ing the ability of the Encoder-Decoder architecture
developed for machine translation (Sutskever et al.,
2014; Bahdanau et al., 2015) to learn the English
past tense. The results suggest that modern nets
absolutely meet the first criterion above, and often
meet the second. Furthermore, they do this given
limited prior knowledge of linguistic structure: the
networks we consider do not have phonological
features built into them and must instead learn their
own representations for input phonemes. The de-
sign and performance of these networks invalidate
many of the criticisms in Pinker and Prince (1988).
We contend that, given the gains displayed in this
case study, which is characteristic of problems
in the morpho-phonological domain, researchers
across linguistics and cognitive science should con-
sider evaluating modern neural architectures as part
of their modeling toolbox.

This paper is structured as follows. Section 2
describes the problem under consideration, the En-
glish past tense. Section 3 lays out the original
Rumelhart and McClelland model from 1986 in
modern machine-learning parlance, and compares
it to a state-of-the-art Encoder-Decoder architec-
ture. A historical perspective on alternative ap-
proaches to modeling, both neural and non-neural,
is provided in Section 4. The empirical perfor-
mance of the Encoder-Decoder architecture is eval-
uated in Section 5. Section 6 provides a summary
of which of Pinker and Prince’s original criticisms
have effectively been resolved, and which ones still
require further consideration. Concluding remarks
follow.

2 The English Past Tense

Many languages mark words with syntactico-
semantic distinctions. For instance, English marks
the distinction between present and past tense verbs,
e.g., walk and walked. English verbal morphol-

orthographic IPA

stem past part. stem past part. infl. type

go went gone goU wEnt goUn suppletive
sing sang sung sIN sæN sUN ablaut
swim swam swum swIm swæm swUm ablaut
sack sacked sacked sæk sækt sækt [-t]
sag sagged sagged sæg sægd sægd [-d]
pat patted patted pæt pætId pætId [-Id]
pad padded padded pæd pædId pædId [-Id]

Table 1: Examples of inflected English verbs.

ogy is relatively impoverished, distinguishing max-
imally five forms for the copula to be and only three
forms for most verbs. In this work, we consider
learning to conjugate the English verb forms, ren-
dered as phonological strings. As it is the focus
of the original Rumelhart and McClelland (R&M)
study, we focus primarily on the English past tense
formation.

Both regular and irregular patterning exist in
English. Orthographically, the canonical regular
suffix is -ed, which, phonologically, may be ren-
dered as one of three phonological strings: [-Id],
[-d] or [-t]. The choice among the three is de-
terministic, depending only on the phonological
properties of the previous segment. English se-
lects [-Id] where the previous phoneme is a [t] or
[d], e.g. [pæt]7→[pætId] (pat 7→patted) and [pæd]7→
[pædId] (pad 7→padded). In other cases, English
enforces voicing agreement: it opts for [-d] when
the proceeding phoneme is a voiced consonant or
a vowel, e.g., [sæg]7→[sægd] (sag 7→sagged) and
[SoU]7→[SoUd] (show7→showed), and for [-t] when
the proceeding phoneme is an unvoiced consonant,
e.g., [sæk]7→[sækt] (sack 7→sacked). English ir-
regulars are either suppletive, e.g., [goU]7→[wEnt]
(go7→went), or exist in sub-regular islands defined
by processes like ablaut, e.g., sing7→sang, that may
contain several verbs (Nelson, 2010): see Table 1.

Single versus Dual Route. A frequently dis-
cussed cognitive aspect of past tense processing
concerns whether or not irregular forms have their
own processing pipeline in the brain. Pinker and
Prince (1988) proposed separate modules for reg-
ular and irregular verbs; regular verbs go through
a general, rule-governed transduction mechanism,
and exceptional irregulars are produced via sim-
ple memory-lookup.1 While some studies, e.g.,
(Marslen-Wilson and Tyler, 1997; Ullman et al.,
1997), provide corroborating evidence from speak-

1Note that irregular lookup can simply be recast as the
application of a context-specific rule.



ers with selective impairments to regular or irregu-
lar verb production, others have called these results
into doubt (Stockall and Marantz, 2006). From
the perspective of this paper, a complete model of
the English past tense should cover both regular
and irregular transformations. The neural network
approaches we advocate for achieve this goal, but
do not clearly fall into either the single or dual-
route category—internal computations performed
by each network remain opaque, so we cannot at
present make a claim whether two separable com-
putation paths are present.

2.1 Acquisition of the Past Tense

The English past tense is of considerable theoretical
interest due to the now well-studied acquisition pat-
terns of children. As first shown by Berko (1958)
in the so-called wug-test, knowledge of English
morphology cannot be attributed solely to memo-
rization. Indeed, both adults and children are fully
capable of generalizing the patterns to novel words,
e.g., [w2g]7→[w2gd] (wug7→wugged). During ac-
quisition, only a few types of errors are common;
children rarely blend regular and irregular forms,
e.g., the past tense of come is either produced as
comed or came, but rarely camed (Pinker, 1999).

Acquisition Patterns for Irregular Verbs. It is
widely claimed that children learning the past tense
forms of irregular verbs exhibit a ‘U-shaped’ learn-
ing curve. At first, they correctly conjugate irreg-
ular forms, e.g., come 7→came, then they regress
during a period of overregularization producing
the past tense as comed as they acquire the general
past tense formation. Finally, they learn to pro-
duce both the regular and irregular forms. Plunkett
& Marchman, however, observed a more nuanced
form of this behavior. Rather than a macro U-
shaped learning process that applies globally and
uniformly to all irregulars, they noted that many
irregulars oscillate between correct and overreg-
ularized productions (Marchman, 1988). These
oscillations, which Plunkett & Marchman refer to
as a micro U-shape, further apply at different rates
for different verbs (Plunkett and Marchman, 1991).
Interestingly, while the exact pattern of irregular
acquisition may be disputed, children rarely overir-
regularize, i.e., misconjugate a regular verb as if
it were irregular such as ping7→pang.

3 1986 vs Today

In this section, we compare the original R&M ar-
chitecture from 1986, to today’s state-of-the-art
neural architecture for morphological transduction,
the Encoder-Decoder model.

3.1 Rumelhart and McClelland (1986)
For many linguists, the face of neural networks
to this day remains the work of R&M. Here, we
describe in detail their original architecture, us-
ing modern machine learning parlance whenever
possible. Fundamentally, R&M were interested
in designing a sequence-to-sequence network for
variable-length input using a small feed-forward
network. From an NLP perspective, this work con-
stitutes one of the first attempts to design a net-
work for a task reminiscent of popular NLP tasks
today that require variable-length input, e.g., part-
of-speech tagging, parsing and generation.

Wickelphones and Wickelfeatures. Unfortu-
nately, a fixed-sized feed-forward network is not
immediately compatible with the goal of trans-
ducing sequences of varying lengths. Rumel-
hart and McClelland decided to get around this
limitation by representing each string as the set
of its constituent phoneme trigrams. Each tri-
gram is termed a Wickelphone (Wickelgren, 1969).
As a concrete example, the IPA-string [#kæt#],
marked with a special beginning- and end-of-
string character, contains three distinct Wickel-
phones: [#kæ], [kæt], [æt#]. In fact, Rumelhart
and McClelland went one step further and decom-
posed Wickelphones into component Wickelfea-
tures, or trigrams of phonological features, one
for each Wickelphone phoneme. For example,
the Wickelphone [ipt] is represented by the Wick-
elfeatures 〈+vowel,+unvoiced,+interrupted〉 and
〈+high,+stop,+stop〉. Since there are far fewer
Wickelfeatures than Wickelphones, words could be
represented with fewer units (of key importance for
1986 hardware) and more shared Wickelfeatures
potentially meant better generalization.

We can describe R&M’s representations us-
ing the modern linear-algebraic notation standard
among researchers in neural networks. First, we
assume that the language under consideration con-
tains a fixed set of phonemes Σ, plus an edge sym-
bol # marking the beginning and end of words.
Then, we construct the set of all Wickelphones
Φ and the set of all Wickelfeatures F by enu-
meration. The first layer of the R&M neural net-



work consists of two deterministic functions: (i)
φ : Σ∗ → B|Φ| and (ii) f : B|Φ| → B|F|,
where we define B = {−1, 1}. The first func-
tion φ maps a phoneme string to the set of Wick-
elphones that fire, as it were, on that string, e.g.,
φ ([#kaet#]) = {[#kæ], [kæt], [æt#]}. The output
subset of Φ may be represented by a binary vector
of length |Φ|, where a 1 means that the Wickel-
phone appears in the string and a −1 that it does
not.2 The second function f maps a set of Wickel-
phones to its corresponding set of Wickelfeatures.

Pattern Associator Network. Here we define
the complete network of R&M. We denote strings
of phonemes as x ∈ Σ∗, where xi is the ith

phoneme in a string. Given source and target
phoneme strings x(i),y(i) ∈ Σ∗, R&M optimize
the following objective, a sum over the individual
losses for each of the i = 1, ..., N training items:

N∑
i=1

∣∣∣∣∣∣max
{

0,−π(y(i))�
(
Wπ(x(i)) + b

)}∣∣∣∣∣∣
1
,

(1)
where max{·} is taken point-wise, � is point-wise
multiplication, W ∈ R|F|×|F| is a projection ma-
trix, b ∈ R|F| is a bias term, and π = φ ◦ f
is the composition of the Wickelphone and Wick-
elfeature encoding functions. Using modern ter-
minology, the architecture is a linear model for a
multi-label classification problem (Tsoumakas and
Katakis, 2006): the goal is to predict the set of
Wickelfeatures in the target form y(i) given the in-
put form x(i) using a point-wise perceptron loss
(hinge loss without a margin), i.e., a binary percep-
tron predicts each feature independently, but there
is one set of parameters {W , b} . The total loss
incurred is the sum of the per-feature loss, hence
the use of the L1 norm. The model is trained with
stochastic sub-gradient descent (the perceptron up-
date rule) (Rosenblatt, 1958; Bertsekas, 2015) with
a fixed learning rate.3 Later work augmented the
architecture with multiple layers and nonlinearities
(Marcus, 2001, Table 3.3).

2We have chosen −1 instead of the more traditional 0 so
that the objective function that Rumelhart and McClelland
optimize may be more concisely written.

3Follow-up work, e.g., Plunkett and Marchman (1991), has
speculated that the original experiments in Rumelhart and Mc-
Clelland (1986) may not have converged. Indeed, convergence
may not be guaranteed depending on the fixed learning rate
chosen. As Equation (1) is jointly convex in its parameters
{W, b}, there exist convex optimization algorithms that will
guarantee convergence, albeit often with a decaying learning
rate.

Decoding. Decoding the R&M network necessi-
tates solving a tricky optimization problem. Given
an input phoneme string x(i), we then must find the
corresponding y′ ∈ Σ∗ that minimizes:

∣∣∣∣∣∣π(y′)− threshold
{
Wπ(x(i)) + b

}∣∣∣∣∣∣
0
, (2)

where threshold is a step function that maps all
non-positive reals to −1 and all positive reals to
1. In other words, we seek the phoneme string
y′ that shares the most features with the max-
imum a-posteriori (MAP) decoded binary vec-
tor. This problem is intractable, and so Rumel-
hart and McClelland (1986) provide an approxi-
mation. For each test stem, they hand-selected a
set of likely past tense candidate forms, e.g., good
candidates for the past tense of break would be
{break,broke,brake,braked}, and choose the form
with Wickelfeatures closest to the network’s output.
This manual approximate decoding procedure is
not intended to be cognitively plausible.

Architectural Limitations. R&M used Wickel-
phones and Wickelfeatures in order to help with
generalization and limit their network to a tractable
size. However, this came at a significant cost to the
network’s ability to represent unique strings—the
encoding is lossy: two words may have the same
set of Wickelphones or features. The easiest way
to see this shortcoming is to consider morpholog-
ical reduplication, which is common in many of
the world’s languages. P&P provide an example
from the Australian language of Oykangand which
distinguishes between algal ‘straight’ and algalgal
‘ramrod straight’; both of these strings have the
identical Wickelphone set {[#al], [alg], [lga], [gal],
[al#]}. Moreover, P&P point out that phonologi-
cally related words such as [slIt] and [sIlt] have dis-
joint sets of Wickelphones: {[#sl], [slI], [lIt], [It#]}
and {[#sI], [sIl], [Ilt], [lt#]}, respectively. These
two words differ only by an instance of metathesis,
or swapping the order of nearby sounds. The use
of Wickelphone representations imposes the strong
claim that they have nothing in common phonolog-
ically, despite sharing all phonemes. P&P suggest
this is unlikely to be the case. As one point of evi-
dence, the metathesis of the kind that differentiates
[slIt] and [sIlt] is a common diachronic change. In
English, for example, [horse] evolved from [hross],
and [bird] from [brid] (Jesperson, 1942).



3.2 Encoder-Decoder Architectures
The NLP community has recently developed an
analogue to the past tense generation task originally
considered by Rumelhart and McClelland (1986):
morphological paradigm completion (Durrett and
DeNero, 2013; Nicolai et al., 2015; Cotterell et al.,
2015; Ahlberg et al., 2015; Faruqui et al., 2016).
The goal is to train a model capable of mapping
the lemma (stem in the case of English) to each
form in the paradigm. In the case of English, the
goal would be to map a lemma, e.g., walk, to its
past tense word walked as well as its gerund and
third person present singular walking and walks,
respectively. This task generalizes the R&M setting
in that it requires learning more mappings than
simply lemma to past tense.

By definition, any system that solves the more
general morphological paradigm completion task
must also be able to solve the original R&M task.
As we wish to highlight the strongest currently
available alternative to R&M, we focus on the state-
of-the-art in morphological paradigm completion:
the Encoder-Decoder network architecture (ED)
(Cotterell et al., 2016). This architecture consists
of two recurrent neural networks (RNNs) coupled
together by an attention mechanism. The encoder
RNN reads each symbol in the input string one at
a time, first assigning it a unique embedding, then
processing that embedding to produce a representa-
tion of the phoneme given the rest of the phonemes
in the string. The decoder RNN produces a se-
quence of output phonemes one at a time, using
the attention mechanism to peek back at the en-
coder states as needed. Decoding ends when a halt
symbol is output. Formally, the ED architecture
encodes the probability distribution over forms

p(y | x) =
N∏
i=1

p(yi | y1, . . . , yi−1, ci) (3)

=
N∏
i=1

g(yi−1, si, ci), (4)

where g is a non-linear function (in our case it is
a multi-layer perceptron), si is the hidden state
of the decoder RNN, y = (y1, . . . , yN ) is the
output sequence (a sequence of N = |y| char-
acters), and finally ci is an attention-weighted
sum of the the encoder RNN hidden states hi, us-
ing the attention weights αk(si−1) that are com-
puted based on the previous decoder hidden state:
ci =

∑|x|
k=1 αk(si−1)hk.

In contrast to the R&M network, the ED network
optimizes the log-likelihood of the training data,
i.e.,

∑M
i=1 log p(y(i) | x(i)) for i = 1, ...,M train-

ing items. We refer the reader to Bahdanau et al.
(2015) for the complete architectural specification
of specific ED model we apply in this paper.

Theoretical Improvements. While there are a
number of possible architectural variants of the ED
architecture (Luong et al., 2015)4, they all share
several critical features that make up for many of
the theoretical shortcomings of the feed-forward
R&M model. The encoder reads in each phoneme
sequentially, preserving identity and order and al-
lowing any string of arbitrary length to receive a
unique representation. Despite this encoding, a
flexible notion of string similarity is also main-
tained as the ED model learns a fixed embedding
for each phoneme that forms part of the representa-
tion of all strings that share the phoneme. When the
network encodes [sIlt] and [slIt], it uses the same
phoneme embeddings—only the order changes. Fi-
nally, the decoder permits sampling and scoring
arbitrary length fully formed strings in polynomial
time (forward sampling), so there is no need to
determine which string a non-unique set of Wick-
elfeatures represents. However, we note that decod-
ing the 1-best string from a sequence-to-sequence
model is likely NP-hard. (1-best string decoding is
even hard for weighted FSTs (Goodman, 1998).)

Multi-Task Capability. A single ED model is
easily adapted to multi-task learning (Caruana,
1997; Collobert et al., 2011), where each task is
a single transduction, e.g., stem 7→ past. Note
R&M would need a separate network for each
transduction, e.g., stem 7→ gerund and stem 7→
past participle. In fact, the current state of the
art in NLP is to learn all morphological transduc-
tions in a paradigm jointly. The key insight is to
construct a single network p(y | x, t) to predict
all inflections, marking the transformation in the
input string, i.e., we feed the network the string
“w a l k <gerund>” as input, augmenting the
alphabet Σ to include morphological descriptors.
We refer to reader to Kann and Schütze (2016)
for the encoding details. Thus, one network pre-
dicts all forms, e.g., p(y |x=walk, t=past) yields
a distribution over past tense forms for walk and

4For the experiments in this paper, we use the variant in
(Bahdanau et al., 2015), which has explicitly been shown to be
state-of-the-art in morphological transduction (Cotterell et al.,
2016).



p(y |x=walk, t=gerund) yields a distribution over
gerunds.

4 Related Work

In this section, we first describe direct followups
to the original 1986 R&M model, employing vari-
ous neural architectures. Then we review compet-
ing non-neural systems of context-sensitive rewrite
rules in the style of the Sound Pattern of English
(SPE) (Halle and Chomsky, 1968), as favored by
Pinker and Prince.

4.1 Followups to Rumelhart and McClelland
(1986) Over the Years

Following R&M, a cottage industry devoted to cog-
nitively plausible connectionist models of inflec-
tion learning sprouted in the linguistics and cog-
nitive science literature. We provide a summary
listing of the various proposals, along with broad-
brush comparisons, in Table 2.

While many of the approaches apply more mod-
ern feed-forward architectures than R&M, introduc-
ing multiple layers connected by nonlinear transfor-
mations, most continue to use feed-forward archi-
tectures with limited ability to deal with variable-
length inputs and outputs, and remain unable to
produce and assign probability to arbitrary output
strings.

(MacWhinney and Leinbach, 1991; Plunkett
and Marchman, 1991, 1993; Plunkett and Juola,
1999) map phonological strings to phonological
strings using feed-forward networks, but rather
than turning to Wickelphones to imprecisely rep-
resent strings of any length, they use fixed-size
input and output templates, with units represent-
ing each possible symbol at each input and output
position. For example, (Plunkett and Marchman,
1991, 1993) simplify the past-tense mapping prob-
lem by only considering a language of artificially
generated words of exactly three syllables and a
limited set of constructed past-tense formation pat-
terns. (MacWhinney and Leinbach, 1991; Plun-
kett and Juola, 1999) additionally modify the input
template to include extra units marking particular
transformations (e.g., past or gerund), enabling
their network to learn multiple mappings.

Some proposals simplify the problem even fur-
ther, mapping fixed-size inputs into a small finite
set of categories, solving a classification problem
rather than a transduction problem. (Hahn and
Nakisa, 2000; Nakisa and Hahn, 1996) classify

German noun stems into their appropriate plural
inflection classes. (Plunkett and Nakisa, 1997) do
the same for Arabic stems.

(Hoeffner, 1992; Hare and Elman, 1995; Cot-
trell and Plunkett, 1994) also solve an alternative
problem—mapping semantic representations (usu-
ally one-hot vectors with one unit per possible word
type, and one unit per possible inflection) to phono-
logical outputs. As these networks use unstructured
semantic inputs to represent words, they must act as
memories—the phonological content of any word
must be memorized. This precludes generalization
to word types that were not seen during training.

Of the proposals that map semantics to phonol-
ogy, the architecture in (Hoeffner, 1992) is unique
in that it uses an attractor network rather than a
feed-forward network, with the main difference be-
ing training using Hebbian learning rather than the
standard backpropagation algorithm. (Cottrell and
Plunkett, 1994) present an early use of a simple
recurrent network (Elman, 1990) to decode out-
put strings, making their model capable of variable
length output.

(Bullinaria, 1997) is one of the few models pro-
posed that can deal with variable length inputs.
They use a derivative of the NETtalk pronuncia-
tion model (Sejnowski and Rosenberg, 1987) that
would today be considered a convolutional net-
work. Each input phoneme in a stem is read in-
dependently along with its left and right context
phonemes within a limited context window (i.e., a
convolutional kernel). Each kernel is then mapped
to zero or more output phonemes within a fixed tem-
plate. Since each output fragment is independently
generated, the architecture is limited to learning
only local constraints on output string structure.
Similarly, the use of a fixed context window also
means that inflectional patterns that depend on long-
distance dependencies between input phonemes
cannot be captured.

Finally, the model of (Westermann and Goebel,
1995) is arguably the most similar to a modern ED
architecture, relying on simple recurrent networks
to both encode input strings and decode output
strings. However, the model was intended to explic-
itly instantiate a dual route mechanism and contains
an additional explicit memory component to memo-
rize irregulars. Despite the addition of this memory,
the model was unable to fully learn the mapping
from German verb stems to their participle forms,
failing to capture the correct form for strong train-



ing verbs including the copular sein → gewesen.
As the authors note, this may be due to the difficulty
of training simple recurrent networks, which tend
to converge to poor local minima. Modern RNN va-
rieties, such as the LSTMs in the ED model, were
specifically designed to overcome these training
limitations (Hochreiter and Schmidhuber, 1997).

4.2 Non-neural Learners

P&P describe several basic ideas that underlie a
traditional, symbolic, rule-learner. Such a learner
produces SPE-style rewrite rules that may be ap-
plied to deterministically transform the input string
into the target. Rule candidates are found by com-
paring the stem and the inflected form, treating the
portion that changes as the rule which governs the
transformation. This is typically a set of non-copy
edit operations. If multiple stem-past pairs share
similar changes, these may be collapsed into a sin-
gle rule by generalizing over the shared phonologi-
cal features involved in the changes. For example,
if multiple stems are converted to the past tense
by the addition of the suffix [-d], the learner may
create a collapsed rule that adds the suffix to all
stems that end in a [+voice] sound. Different rules
may be assigned weights (e.g., probabilities) de-
rived from how many stem-past pairs exemplify the
rules. These weights decide which rules to apply
to produce the past tense.

Several systems that follow the rule-based tem-
plate above have been developed in NLP. While the
SPE itself does not impose detailed restrictions on
rule structure, these systems generate rules that can
be compiled into finite-state transducers (Kaplan
and Kay, 1994; Ahlberg et al., 2015). While these
systems generalize well, even the most successful
variants have been shown to perform significantly
worse than state-of-the-art neural networks at mor-
phological inflection, often with a >10% differen-
tial in accuracy on held-out data (Cotterell et al.,
2016).

In the linguistics literature, the most straight-
forward, direct machine-implemented instantiation
of the P&P proposal is, arguably, the Minimal Gen-
eralization Learner (MGL) of Albright and Hayes
(2003) (c.f., Allen and Becker, 2015; Taatgen and
Anderson, 2002). This model takes a mapping
of phonemes to phonological features and makes
feature-level generalizations like the post-voice [-
d] rule described above. For a detailed technical
description, see Albright and Hayes (2002). We

treat the MGL as a baseline in §5.
Unlike (Taatgen and Anderson, 2002), which

explicitly accounts for dual route processing by
including both memory retrieval and rule appli-
cation submodules, (Albright and Hayes, 2003)
and (Allen and Becker, 2015) rely on discovering
and correctly weighting (using weights learned by
log-linear regression) highly stem-specific rules to
account for irregular transformations.

Within the context of rule-based systems, several
proposals focus on the question of rule generaliza-
tion, rather than rule synthesis. That is, given a set
of pre-defined rules, the systems implement metrics
to decide whether rules should generalize to novel
forms, depending on the number of exceptions in
the data set. (Yang, 2016) defines the ‘tolerance
principle,’ a threshold for exceptionality beyond
which a rule will fail to generalize. (O’Donnell
et al., 2011) treat the question of whether a rule
will generalize as one of optimal Bayesian infer-
ence.

5 Evaluation of the ED Learner

We evaluate the performance of the ED architec-
ture in light of the criticisms Pinker and Prince
(P&P) levied against the original R&M model. We
show that in most cases, these criticisms no longer
apply.5

The most potent line of attack P&P use against
the R&M model is that it simply does not learn
the English past tense very well. While the non-
deterministic, manual, and non-precise decoding
procedure used by R&M makes it difficult to ob-
tain exact accuracy numbers, P&P estimate that the
model only prefers the correct past tense form for
about 67% of English verb stems. Furthermore,
many of the errors made by the R&M network are
unattested in human performance. For example,
the model produces blends of regular and irreg-
ular past-tense formation, e.g., eat 7→ ated, that
children do not produce unless they mistake ate
for a present stem (Pinker, 1999). Furthermore,
the R&M model frequently produces irregular past
tense forms when a regular formation is expected,
e.g., ping 7→ pang. Humans are more likely to
overregularize. These behaviors suggest the R&M
model learns the wrong kind of generalizations. As
shown below, the ED architecture seems to avoid

5Datasets and code for all experiments are
available at https://github.com/ckirov/
RevisitPinkerAndPrince

https://github.com/ckirov/RevisitPinkerAndPrince
https://github.com/ckirov/RevisitPinkerAndPrince


Type of Model Reference Input Output

Feedforward Network Rumelhart and McClelland (1986) Wickelphones Wickelphones
Feedforward Network MacWhinney and Leinbach (1991) Fixed Size Phonological Template Fixed Size Phonological Template
Feedforward Network Plunkett and Marchman (1991) Fixed Size Phonological Template Fixed Size Phonological Template
Attractor Network Hoeffner (1992) Semantics Fixed Size Phonological Template
Feedforward Network Plunkett & Marchman (1993) Fixed Size Phonological Template Fixed Size Phonological Template
Recurrent Neural Network Cottrell & Plunkett (1994) Semantics Phonological String
Feedforward Network Hare, Elman, & Daugherty (1995) Fixed Size Phonological Template Inflection Class
Feedforward Neural Network Hare & Elman (1995) Semantics Fixed Size Phonological Template
Recurrent Neural Network Westermann & Goebel (1995) Phonological String Phonological String
Feedforward Neural Network Nakisa & Hahn (1996) Fixed Size Phonological Template Inflection Class
Convolutional Neural Network Bullinaria (1997) Phonological String Phonological String
Feedforward Neural Network Plunkett & Nakisa (1997) Fixed Size Phonological Template Inflection Class
Feedforward Neural Network Plunkett & Juola (1999) Fixed Size Phonological Template Fixed Size Phonological Template
Feedforward Neural Network Hahn & Nakisa (2000) Fixed Size Phonological Template Inflection Class

Table 2: A curated list of related work, categorized by aspects of the technique. Based on a similar list found in
Marcus (2001, page 82).

these pitfalls, while outperforming a P&P-style
non-neural baseline.

5.1 Experiment 1: Learning the Past Tense

In the first experiment, we seek to show: (i) the ED
model successfully learns to conjugate both regular
and irregular verbs in the training data, and gener-
alizes to held-out data at convergence and (ii) the
pattern of errors the model exhibits is compatible
with attested speech errors.

CELEX Dataset. Our base dataset consists of
4039 verb types in the CELEX database (Baayen
et al., 1993). Each verb is associated with a present
tense form (stem) and past tense form, both in IPA.
Each verb is also marked as regular or irregular
(Albright and Hayes, 2003). 168 of the 4039 verb
types were marked as irregular. We assigned verbs
to train, development, and test sets according to
a random 80-10-10 split. Each verb appears in
exactly one of these sets once. This corresponds to
a uniform distribution over types since every verb
has an effective frequency of 1.

In contrast, the original R&M model was trained,
and tested (data was not held out), on a set of 506
stem/past pairs derived from (Kučera and Francis,
1967). 98 of the 506 verb types were marked as
irregular.

Types vs Tokens. In real human communication,
words follow a Zipfian distribution, with many ir-
regular verbs being exponentially more common
than regular verbs. While this condition is more
true to the external environment of language learn-
ing, it may not accurately represent the psycholog-
ical reality of how that environment is processed.
A body of psycholinguistic evidence (Bybee, 1995,
2001; Pierrehumbert, 2001) suggests that human
learners generalize phonological patterns based on
the count of word types they appear in, ignoring the

token frequency of those types. Thus, we chose to
weigh all verb types equally for training, effecting a
uniform distribution over types as described above.

Hyperparameters and Other Details. Our ar-
chitecture is nearly identical to that used in (Bah-
danau et al., 2015), with hyperparameters set fol-
lowing Kann and Schütze (2016, §4.1.1). Each
input character has an embedding size of 300 units.
The encoder consists of a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) with two lay-
ers. There is a dropout value of 0.3 between the
layers. The decoder is a unidirectional LSTM with
two layers. Both the encoder and decoder have
100 hidden units. Training was done using the
Adadelta procedure (Zeiler, 2012) with a learning
rate of 1.0 and a minibatch size of 20. We train
for 100 epochs to ensure that all verb forms in the
training data are adequately learned. We decode
the model with beam search (k = 12). The code
for our experiments is derived from the OpenNMT
package (Klein et al., 2017). We use accuracy as
our metric of performance. We train the MGL as a
non-neural baseline, using the code distributed with
(Albright and Hayes, 2003) with default settings.

Results and Discussion. The non-neural MGL
baseline unsurprisingly learns the regular past-
tense pattern nearly perfectly, given that it is im-
bued with knowledge of phonological features as
well as a list of phonologically illegal phoneme
sequences to avoid in its output. However, in our
testing of the MGL, the preferred past-tense output
for all verbs was never an irregular formulation.
This was true even for irregular verbs that were
observed by the learner in the training set. One
might say that the MGL is only intended to account
for the regular route of a dual route system. How-
ever, the intended scope of the MGL seems to be
wider. The model is billed as accurately learning



all regular irregular

train dev test train dev test train dev test

Single-Task (MGL) 96.0 96.0 94.5 99.9 100.0 100.0 0.0 0.0 0.0

Single-Task (Type) 99.8† 97.4 95.1 99.9 99.2 98.9 97.6† 53.3† 28.6†
Multi-Task (Type) 100.0† 96.9 95.1 100.0 99.5 99.7 99.2† 33.3† 28.6†

Table 3: Results on held-out data in English past tense
prediction for single- and multi- task scenarios. The
MGL achieves perfect accuracy on regular verbs, and
0 accuracy on irregular verbs. † indicates that a neu-
ral model’s performance was found to be significantly
different (p < 0.05) from the MGL.

‘islands of subregularity’ within the past tense sys-
tem and Albright & Hayes use the model to make
predictions about which irregular forms of novel
verb stems are preferable to human speakers (see
discussion of wugs below).

In contrast, the ED model, despite no built-
in knowledge of phonology, successfully learns
to conjugate nearly all the verbs in the training
data, including irregulars—no reduction in scope is
needed. This capacity to account for specific excep-
tions to the regular rule does not result in overfitting.
We note similarly high accuracy on held-out regular
data—98.9%-99.2% at convergence depending on
the condition. We report the full accuracy in all con-
ditions in Table 3. The † indicates when a neural
model’s performance was found to be significantly
different (p < 0.05) from the MGL according to
a χ2 test. The ED model achieves near-perfect ac-
curacy on regular verbs, and irregular verbs seen
during training, as well as substantial accuracy on
irregular verbs in the dev and test sets. This be-
havior jointly results in better overall performance
for the ED model when all verbs are considered.
Figure 1 shows learning curves for regular and ir-
regular verbs types in different conditions.

An error analysis of held-out data shows that the
errors made by this network do not show any of
the problems of the R&M architecture. There are
no blend errors of the eat 7→ ated variety. Indeed,
the only error the network makes on irregulars is
overregularization (e.g., throw → throwed). In
fact, the overregularization-caused lower accuracy
which we observe for irregular verbs in develop-
ment and test, is expected and desirable; it matches
the human tendency to treat novel words as regu-
lar, lacking knowledge of irregularity (Albright and
Hayes, 2003).

While most held-out irregulars are regularized,
as expected, the ED model does, perhaps surpris-
ingly, correctly conjugate a handful of irregular
forms it hasn’t seen during training—5 in the test

0 20 40 60 80 100
0

20

40

60

80

100

Multi-Task Regulars
Single-Task Regulars
Multi-Task All Verbs
Single-Task All Verbs
Multi-Task Irregulars
Single-Task Irregulars

Figure 1: Single-task versus multi-task. Learning curves
for the English past tense. The x-axis is the number of
epochs (one complete pass over the training data) and
the y-axis is the accuracy on the training data (not the
metric of optimization).

set. However, three of these are prefixed versions
of irregulars that exist in the training set (retell
→ retold, partake → partook, withdraw → with-
drew). One (sling→ slung) is an analogy to similar
training words (fling, cling). The final conjugation,
forsake→ forsook, is an interesting combination,
with the prefix ’for’, but an unattested base form
’sake’ that is similar to ’take.’ 6

From the training data, the only regular verb
with an error is ‘compartmentalize’, whose past
tense is predicted to be ‘compartmantalized,’ with a
spurious vowel change that would likely be ironed
out with additional training. Among the regular
verbs in the development and test sets, the errors
also consisted of single vowel changes (the full set
of these errors was ‘thin’→ ‘thun,’ ‘try’→ ‘traud,’
‘institutionalize’→ ‘instititionalized,’ and ‘drawl’
→ ‘drooled’).

Overall then, the ED model performs extremely
well, a far cry from the ≈67% accuracy of the
R&M model. It exceeds any reasonable standard
of empirical adequacy, and shows human-like error
behavior.

Acquisition Patterns. R&M made several
claims that their architecture modeled the detailed
acquisition of the English past tense by children.
The core claim was that their model exhibited a
macro U-shaped learning curve as in §2 above. Ir-
regulars were initially produced correctly, followed
by a period of overregularization preceding a final
correct stage. However, P&P point out that R&M

6[s] and [t] are both coronal consonants, a fricative and a
stop, respectively.



English Network MG
Regular (rife ∼ rifed, n=58) 0.48 0.35
Irregular (rife ∼ rofe, n=74) 0.45 0.36

Table 4: Spearman’s ρ of human wug production proba-
bilities with MG scores and ED probability estimates.

only achieve this pattern by manipulating the the
input distribution fed into their network. They
trained only on irregulars for a number of epochs,
before flooding the network with regular verb
forms. R&M justify this by claiming that young
children’s vocabulary consists disproportionately
of irregular verbs early on, but P&P cite contrary
evidence. A survey of child-directed speech
shows that the ratio of regular to irregular verbs
a child hears is constant while they are learning
their language (Slobin, 1971). Furthermore,
psycholinguistic results suggest that there is
no early skew towards irregular verbs in the
vocabulary children understand or use (Brown,
1973).

While we do not wish to make a strong claim
that the ED architecture accurately mirrors chil-
dren’s acquisition, only that it ultimately learns
the correct generalizations, we wanted to see if it
would display a child-like learning pattern without
changing the training inputs fed into the network
over time, i.e., in all of our experiments, the data
sets remained fixed for all epochs, unlike in R&M.
While we do not clearly see a macro U-shape, we
do observe Plukett & Marchman’s predicted oscil-
lations for irregular learning—the so-called micro
U-shaped pattern. As shown in Table 5, individ-
ual verbs oscillate between correct production and
overregularization before they are fully mastered.

Wug Testing. As a further test of the MGL as a
cognitive model, Albright & Hayes created a set of
74 nonce English verb stems with varying levels
of similarity to both regular and irregular verbs.
For each stem (e.g., rife), they picked one regular
output form (rifed), and one irregular output form
(rofe). They used these stems and potential past-
tense variants to perform a wug test with human
participants. For each stem, they had 24 partici-
pants freely attempt to produce a past tense form.
They then counted the percentage of participants
that produced the pre-chosen regular and irregular
forms (production probability). The production
probabilities for each pre-chosen regular and irregu-
lar form could then be correlated with the predicted
scores derived from the MGL. In Table 4, we com-

CLING MISLEAD CATCH FLY

# output # output # output # output

5 [klINd] 8 [mIsli:dId] 7 [kætS] 6 [flaId]
11 [kl2N] 19 [mIslEd] 31 [kætS] 31 [flu:]
13 [klIN] 21 [mIslEd] 43 [kOt] 40 [flaId]
14 [klINd] 23 [mIslEd] 44 [kætS] 42 [fleI]
18 [kl2N] 24 [mIsli:dId] 51 [kætS] 47 [flaId]
21 [klINd] 29 [mIslEd] 52 [kOt] 56 [flu:]
28 [kl2N] 30 [mIsli:dId] 66 [kætS] 62 [flaId]
40 [kl2N] 41 [mIslEd] 73 [kOt] 70 [flu:]

Table 5: Here we evince the oscillating development of
single words in our corpus. For each stem, e.g., CLING,
we show the past form that produced at change points to
show the diversity of alternation. Beyond the last epoch
displayed, each verb was produced correctly.

pare the correlations based on their model scores,
with correlations comparing the human scores to
the output probabilities given by an ED model. As
the wug data provided with (Albright and Hayes,
2003) uses a different phonetic transcription than
the one we used above, we trained a separate ED
model for this comparison. Model architecture,
training verbs, and hyperparameters remained the
same. Only the transcription used to represent input
and output strings was changed to match (Albright
and Hayes, 2003). Following the original paper, we
correlate the probabilities for regular and irregular
transformations separately. We apply Spearman’s
rank correlation, as we don’t necessarily expect
a linear relationship. We see that the ED model
probabilities are slightly more correlated than the
MGL’s scores.

5.2 Experiment 2: Joint Multi-Task Learning

Another objection levied by P&P is R&M’s focus
on learning a single morphological transduction:
stem to past tense. Many phonological patterns
in a language, however, are not restricted to a sin-
gle transduction—they make up a core part of the
phonological system and take part in many differ-
ent processes. For instance, the voicing assimila-
tion patterns found in the past tense also apply to
the third person singular: we see the affix -s ren-
dered as [-s] after voiceless consonants and [-z]
after voiced consonants and vowels.

P&P argue that the R&M model would not be
able to take advantage of these shared generaliza-
tions. Assuming a different network would need
to be trained for each transduction, e.g., stem to
gerund and stem to past participle, it would be im-
possible to learn that they have any patterns in com-
mon. However, as discussed in §3.2, a single ED



model can learn multiple types of mapping, simply
by tagging each input-output pair in the training
set with the transduction it represents. A network
trained in such a way shares the same weights and
phoneme embeddings across tasks, and thus has
the capacity to generalize patterns across all trans-
ductions, naturally capturing the overall phonology
of the language. Since different transductions mu-
tually constrain each other (e.g., English in general
does not allow sequences of identical vowels), we
actually expect faster learning of each individual
pattern, which we test in the following experiment.

We trained a model with an architecture identical
to that used in Exp. 1, but this time to jointly predict
four mappings associated with English verbs (past,
gerund, past participle, third-person singular).

Data. For each of the verb types in our base
training set from Exp. 1, we added the three re-
maining mappings. The gerund, past-participle,
and third-person singular forms were identified in
CELEX according to their labels in Wiktionary
(Sylak-Glassman et al., 2015). The network was
trained on all individual stem 7→ inflection pairs in
the new training set, with each input string modi-
fied with additional characters representing the cur-
rent transduction (Kann and Schütze, 2016): take
<PST> 7→ took, but take <PTCP> 7→ taken.7

Results. Table 3 and Figure 1 show the results.
Overall, accuracy is >99% after convergence on
train. While the difference in final performance is
never statistically significant compared to single-
task learning, the learning curves are much steeper
so this level of performance is achieved much more
quickly. This provides evidence for our intuition
that cross-task generalization facilitates individual
task learning due to shared phonological patterning,
i.e., jointly generating the gerund hastens past tense
learning.

6 Summary of Resolved and
Outstanding Criticisms

In this paper, we’ve argued that the Encoder-
Decoder architecture obviates many of the criti-

7Without input annotation to mark the different mappings
the network must learn, it would treat all input/output pairs
as belonging to the same mapping, with each inflected form
of a single stem as an equally likely output variant associated
with that mapping. It is not within the scope of this net-
work architecture to solve problems other than morphological
transduction, such as discovering the range of morphological
paradigm slots.

cisms P&P levied against R&M. Most importantly,
the empirical performance of neural models is no
longer an issue. The past tense transformation is
learned nearly perfectly, compared to an approxi-
mate accuracy of 67% for R&M. Furthermore, the
ED architecture solves the problem in a fully gen-
eral setting. A single network can easily be trained
on multiple mappings at once (and appears to gener-
alize knowledge across them). No representational
cludges such as Wickelphones are required—ED
networks can map arbitrary length strings to arbi-
trary length strings. This permits training and eval-
uating the ED model on realistic data, including the
ability to assign an exact probability to any arbi-
trary output string, rather than ‘representative’ data
designed to fit in a fixed-size neural architecture
(e.g., fixed input and output templates). Evaluation
shows that the ED model does not appear to display
any of the degenerate error-types P&P note in the
output of R&M (e.g., regular/irregular blends of
the ate→ ated variety.

Despite this litany of successes, some outstand-
ing criticisms of R&M still remain to be addressed.
On the trivial end, P&P correctly point out that the
R&M model does not handle homophones: write
7→ wrote, but right 7→ righted. This is because it
only takes the phonological make-up of the input
string into account, without concern for its lexi-
cal identity. This issue affects the ED models we
discuss in this paper as well—lexical disambigua-
tion is outside of their intended scope. However,
even the rule-learner P&P propose does not have
such functionality. Furthermore, if lexical mark-
ings were available, we could incorporate them into
the model just as with different transductions in the
multi-task set-up, i.e., by adding the disambiguat-
ing markings to the input.

More importantly, we need to limit any claims
regarding treating ED models as proxies for child
language learners. P&P criticized such claims from
R&M because they manipulated the input data dis-
tribution given to their network over time to effect
a U-shaped learning curve, despite no evidence that
the manipulation reflected children’s perception or
production capabilities. We avoid this criticism
in our experiments, keeping the input distribution
constant. We even show that the ED model cap-
tures at least one observed pattern of child language
development—Plukett & Marchman’s predicted os-
cillations for irregular learning, the micro U-shaped
pattern. However, we did not observe a macro U-



shape, nor was the micro effect consistent across
all irregular verbs. More study is needed to deter-
mine the ways in which ED architectures do or do
not reflect children’s behavior. Even if nets do not
match the development patterns of any individual,
they may still be useful if they ultimately achieve
a knowledge state that is comparable to that of an
adult or, possibly, the aggregate usage statistics of
a population of adults.

Along this vein, P&P note that the R&M model
is able to learn highly unnatural patterns that do
not exist in any language. For example, it is
trivial to map each Wickelphone to its reverse,
effectively creating a mirror-image of the input,
e.g., brag7→garb. Although an ED model could
likely learn linguistically unattested patterns as
well, some patterns may be more difficult to learn
than others, e.g., they might require increased time-
to-convergence. It remains an open question for
future research to determine which patterns RNN’s
prefer, and which changes are needed to account
for over- and underfitting. Indeed, any sufficiently
complex learning system (including rule-based
learners) would have learning biases which require
further study.

There are promising directions from which to
approach this study. Networks are in a way analo-
gous to animal models (McCloskey, 1991), in that
they share interesting properties with human learn-
ers, as shown empirically, but are much easier and
less costly to train and manipulate across multiple
experiments. Initial experiments could focus on
default architectures, as we do in this paper, effec-
tively treating them as inductive baselines (Gildea
and Jurafsky, 1996) and measuring their perfor-
mance given limited domain knowledge. Our ED
networks, for example, have no built-in knowledge
of phonology or morphology. Failures of these
baselines would then point the way towards the
biases required to learn human language, and mod-
els modified to incorporate these biases could be
tested.

7 Conclusion

We have shown that the application of the ED archi-
tecture to the problem of learning the English past
tense obviates many, though not all, of the objec-
tions levied by P&P against the first neural network
proposed for the task, suggesting that the criticisms
do not extend to all neural models, as P&P imply.
Compared to a non-neural baseline, the ED model

accounts for both regular and irregular past tense
formation in observed training data and generalizes
to held-out verbs, all without built-in knowledge
of phonology. While not necessarily intended to
act as a proxy for a child learner, the ED model
also shows one of the development patterns that
have been observed in children, namely a micro
U-shaped (oscillating) learning curve for irregular
verbs. The accurate and substantially human-like
performance of the ED model, warrants consid-
eration of its use as a research tool in theoretical
linguistics and cognitive science.
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