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Abstract

A traditional claim in linguistics is that all
human languages are equally expressive—
able to convey the same wide range of
meanings. Morphologically rich lan-
guages, such as Czech, rely on overt in-
flectional and derivational morphology to
convey many semantic distinctions. Lan-
guages with comparatively limited mor-
phology, such as English, should be able
to accomplish the same using a combi-
nation of syntactic and contextual cues.
We capitalize on this idea by training a
tagger for English that uses syntactic fea-
tures obtained by automatic parsing to re-
cover complex morphological tags pro-
jected from Czech. The high accuracy
of the resulting model provides quantita-
tive confirmation of the underlying lin-
guistic hypothesis of equal expressivity,
and bodes well for future improvements in
downstream HLT tasks including machine
translation.

1 Introduction

Different languages use different grammatical
tools to convey the same meanings. For ex-
ample, to indicate that a noun functions as a
direct object, English—a morphologically poor
language—places the noun after the verb, while
Czech—a morphologically rich language—uses
an accusative case suffix. Consider the follow-
ing two glossed Czech sentences: ryba jedla (“the
fish ate”) and oni jedli rybu (“they ate the fish”).
The key insight is that the morphology of Czech
(i.e., the case ending -u), carries the same seman-
tic content as the syntactic structure of English

(i.e., the word order) (Harley, 2015). Theoreti-
cally, this common underlying semantics should
allow syntactic structure to be transformed into
morphological structure and vice versa. We ex-
plore the veracity of this claim computationally
by asking the following: Can we develop a tag-
ger for English that uses the signal available in
English-only syntactic structure to recover the rich
semantic distinctions conveyed by morphology in
Czech? Can we, for example, accurately detect
which English contexts would have a Czech trans-
lation that employs the accusative case marker?

Traditionally, morphological analysis and tag-
ging is a task that has been limited to morphologi-
cally rich languages (MRLs) (Hajič, 2000; Drábek
and Yarowsky, 2005; Müller et al., 2015; Buys
and Botha, 2016). In order to build a rich mor-
phological tagger for a morphologically poor lan-
guage (MPL) like English, we need some way to
build a gold standard set of richly tagged English
data for training and testing. Our approach is to
project the complex morphological tags of Czech
words directly onto the English words they align
to in a large parallel corpus. After evaluating the
validity of these projections, we develop a neural
network tagging architecture that takes as input a
number of English features derived from off-the-
shelf dependency parsing and attempts to recover
the projected Czech tags.

A tagger of this sort is interesting in many ways.
Whereas the best NLP tools are typically available
for English, morphological tagging at this gran-
ularity has until now been applied almost exclu-
sively to MRLs. The task is also scientifically in-
teresting, in that it takes semantic properties that
are latent in the syntactic structure of English and
transforms them into explicit word-level annota-
tions. Finally, such a tool has potential utility in a



Subtag Values
GENDER FEM, MASC, NEUT
NUMBER SG, DU, PL
CASE NOM, GEN, DAT, ACC, VOC, ESS, INS
PERSON 1, 2, 3
TENSE FUT, PRS, PST
GRADE CMPR, SPRL
NEGATION POS, NEG
VOICE ACT, PASS

Table 1: The subset of the UniMorph Schema used here.

range of downstream tasks, such as machine trans-
lation into MRLs (Sennrich and Haddow, 2016).

2 Projecting Morphological Tags

Training a system to tag English text with multi-
dimensional morphological tags requires a corpus
of English text annotated with those tags. Since
no such corpora exist, we must construct one.
Past work (focused on translating out of English
into MRLs) assigned a handful of morphologi-
cal annotations using manually-developed heuris-
tics (Drábek and Yarowsky, 2005; Avramidis and
Koehn, 2008), but this is hard to scale. We there-
fore instead look to obtain rich morphological tags
by projecting them (Yarowsky et al., 2001) from
a language (such as Czech) where such rich tags
have already been annotated.

We use the Prague Czech–English Dependency
Treebank (PCEDT) (Hajič et al., 2012), a com-
plete translation of the Wall Street Journal por-
tion of the Penn Treebank (PTB) (Marcus et al.,
1993). Each word on the Czech side of the
PCEDT was originally hand-annotated with com-
plex 15-dimensional morphological tags contain-
ing positional subtag values for morphological cat-
egories specific to Czech.1 We manually mapped
these tags to the UniMorph Schema tagset (Sylak-
Glassman et al., 2015), which provides a uni-
versal, typologically-informed annotation frame-
work for representing morphological features of
inflected words in the world’s languages. Uni-
Morph tags are in principle up to 23-dimensional,
but tags are not positionally dependent, and not
every dimension needs to be specified. Table 1
shows the subset of UniMorph subtags used here.
PTB tags have no formal internal subtag structure.

1For our purposes, a morphological tag is a complex,
multiclass entity comprising the morphological features that
a word bears across many different inflectional categories
(e.g., CASE, NUMBER, and so on). We call these features sub-
tags, and each takes one of several values (e.g., PRS ‘present’
in the TENSE category of the UniMorph Schema).

PTB Expected UM Match %
NN SG 87.8

NNP SG 73.9
NNS PL 83.3

NNPS PL 65.1
JJR CMPR 89.0
JJS SPRL 79.3

RBR CMPR 76.3
RBS SPRL 68.7
VBZ SG 91.3
VBZ 3 90.7
VBZ PRS 89.4
VBG PRS 55.9
VBP PRS 87.2
VBD PST 93.9
VBN PST 78.7

Average Match % 80.7

Table 2: To evaluate the validity of projecting morpholog-
ical tags from Czech onto English text, we compare these
projected features to features obtained from the original PTB
tags (listed on the left). The expected UniMorph (UM) sub-
tag (center) is from a manual ‘translation’ of PTB tags into
UniMorph tags. The match percentage indicates how often
the feature projected from a UniMorph ‘translation’ of the
original PCEDT annotation of Czech matches the feature that
would be expected subtag. Note that the core part-of-speech
must agree as a precondition for further evaluation.

See Figure 1 for a comparison of the PCEDT, Uni-
Morph, and PTB tag systems for a Czech word and
its aligned English translation.

The PCEDT also contains automatically gener-
ated word alignments produced by using GIZA++
(Och and Ney, 2003) to align the Czech and En-
glish sides of the treebank. We use these align-
ments to project morphological tags from the
Czech words to their English counterparts through
the following process. For every English word,
if the word is aligned to a single Czech word,
take its tag. If the word is mapped to multiple
Czech words, take the annotation from the align-
ment point belonging to the intersection of the
two underlying GIZA++ models used to produce
the many-many alignment.2 If no such alignment
point is found, take the leftmost aligned word. Un-
aligned English words get no annotation.

3 Validating Projections

If we believe that we can project semantic distinc-
tions over bitext, we must ensure that the elements
linked by projection in both source and target lan-
guages carry roughly the same meaning. This is
difficult to automate, and no gold-standard dataset
or metric has been developed. Thus, we offer the
following approximate evaluation.

2This intersection is marked as int.gdfa in the PCEDT.



Czech PCEDT tag UniMorph tag = English PTB tag
je VB-S---3P-AA--- V;ACT;POS;PRS;3;SG is VBZ

Figure 1: The PCEDT tag of the Czech word je was mapped to an equivalent UniMorph tag. The English translation of je,
which is the copula is, has the PTB tag VBZ. While the PCEDT and UniMorph tags are composed of subtags, the PTB tag has
no formal internal composition.

English is not bereft of morphological marking,
and its use of it, though limited, does sometimes
coincide with that of Czech. For example, both
languages use overt morphology to mark nouns
as singular or plural, adjectives and adverbs as
superlative or comparative, and verbs as either
present or past.3 In these cases it is possible to
directly map word-level PTB tags in English to
word-level UniMorph tags in Czech, and to com-
pare how often projected tags conform to this ex-
pected mapping. For example, the PTB tag VBZ
is mapped to the UniMorph tag V;PRS;3;SG. Ta-
ble 2 shows a set of expected projections along
with how often the expectations are met across the
PCEDT. In particular, we calculate the percent-
age of cases when an English word with a partic-
ular PTB tag has the expected Czech tag projected
onto it. This calculation is only performed in those
cases where where the aligned words agree in their
core part of speech, since we would not expect, for
example, verbs to have superlative/comparative
morphology.

A qualitative examination of these results sug-
gests that projections are usually valid in at least
those cases where our limited linguistic intuitions
predict they should be. For example, the dual
number feature (DU) was projected in only 12 in-
stances, but was almost always projected to the
English words “two,” “eyes,” “feet,” and “hands.”
These concepts naturally come in pairs, and this
distinction is explicitly marked in Czech, but not
English. We interpret this evaluation as suggesting
that we can trust projection even in cases where we
do not have pre-existing expectations of how En-
glish and Czech grammars should align.

4 Neural Morphological Tag Prediction

4.1 Features

With our projections validated, we turn to the pre-
diction model itself. Based on the idea that lan-
guages with rich morphology use that morphol-
ogy to convey similar distinctions in meaning to

3English also uses morphology to mark the 3rd person sin-
gular verb form.

that conveyed by syntax in a morphologically poor
language, we extract lexical and syntactic features
from English text itself as well as both depen-
dency and CFG parses. We use the following
basic features derived directly from the text: the
word itself, the single-word lexical context, and
the word’s POS tag neighbors. We also use fea-
tures derived from dependency trees.

• Head features. The word’s head word, and
separately, the head word’s POS.

• Head chain POS. The chain of POS tags be-
ginning with the word and moving upward
along the dependency graph.

• Head chain labels. The chain of dependency
labels moving upward.

• Child words. The identity of any child word
having an arc label of det or case, under the
Universal Dependency features.4

Finally, we use features from CFG parsing:

• POS features. A word’s part-of-speech
(POS) tag, its parent’s, and its grandparent’s.

• Chain features. We compute chains of the
tree nodes, starting with its POS tag and mov-
ing upward (NN NP S).

• The distance to the root.

Non-lexical features are treated as real-valued
when appropriate (such as in the case of the dis-
tance to the root), while all others are treated as
binary. For lexical features, we use pretrained
GLoVe embeddings, specifically 200-dimensional
400K-vocab uncased embeddings from Penning-
ton et al. (2014). This is an approach similar to
Tran et al. (2015), but we additionally augment
the pretrained embeddings with randomly initial-
ized embeddings for vocabulary items outside of
the 400K lexicon.

4.2 Neural Model

In order to take advantage of correlated informa-
tion between subtags, we present a neural model

4universaldependencies.org



Other companies are introducing related products
PL, NOM PL, NOM ACT, 3, PRS, PL ACT, 3, PRS, PL PL, ACC PL, ACC

Table 3: An English sentence from the test set, WSJ §22, tagged with rich morphological tags by our neural tagger. Note, for
example, that case is tagged correctly, with Other companies tagged as nominative and related products tagged as accusative.
Legend here: CASE (NOM = nominative, ACC = accusative), TENSE (PRS = present), NUMBER (PL = plural), VOICE (ACT
= active), and PERSON (3).

which learns a common representation of input to-
kens, and passes it on to a series of subtag classi-
fiers that are trained jointly. Informally, this means
that we learn a shared representation in the hid-
den layers and then use separate weight functions
to predict each component of the morphological
analysis from this shared representation of the in-
put. We use a feed-forward neural net with two
hidden layers and rectified linear unit (ReLU) ac-
tivation functions (Glorot et al., 2011). A Uni-
Morph tag m can be decomposed into its N sub-
tags as m = [m(1),m(2), . . . ,m(N)], where each
m(i) may be represented as a one-hot vector. The
weight matrices (W (1), W (2)) and bias vectors
(b(1), b(2)) connecting the hidden layers are pa-
rameters for the whole model, but each of the
N subtag classes has its own weight matrix and
bias vector W (3)

i , b
(3)
i . All are randomly initial-

ized from truncated normal distributions. Given
an input vector x, we first compute a new input
x′ = [xnon-lex : Exlex0 : Exlex1 : . . . : Exlexn ],
where [a : b] represents vector concatenation. All
lexical features xlexi

are replaced by their embed-
dings from the embedding matrix E.

f(x′)=relu
(
b(2)+W (2)relu

(
b(1)+W (1)x′

))
(1)

p(m(i) |x, θ)=softmax
(
b
(3)
i +W

(3)
i f(x′)

)
(2)

Then the definition of p(m) follows:

p(m | x, θ) =
N∏
i=1

p(m(i) | x, θ) (3)

The set of parameters is θ = {E,W (1), b(1),W (2),

b(2),W
(3)
1 , b

(3)
1 , . . . ,W

(3)
N , b

(3)
N }. The loss is de-

fined as the cross-entropy, and the model is trained
using gradient descent with minibatches. The
models were trained using TensorFlow (Abadi et
al., 2015). We complete a coarse-grained grid
search over the learning rate, hidden layer size,
and batch size. Based on performance on the de-
velopment set, we choose a hidden layer size of

1000. We tune model parameters on whole-tag ac-
curacy on WSJ §00. We find that a learning rate of
0.01 and batch size of 50 work best.

5 Experiment Setup

Our goal is to predict rich morphological tags for
monolingual English text. The tagger was trained
on §02–21 of the WSJ portion of the PTB. §00 was
used for tuning. Training tags were projected from
the equivalent Czech portion of the PCEDT, across
the standard alignments provided by the PCEDT,
as described in §2. Projected tags were treated
as a gold standard to be recovered by the tagger.
The full training set consisted of 39,832 sentences
(726,262 words). Evaluation of the tagger was
done on §22 of the WSJ portion of the PCEDT.

6 Results and Analysis

Table 4 shows the accuracy of the neural tagger for
each subtag category from Table 1, indicating how
often the tagger recovered the English projections
of the Czech subtags. Baseline 1 is computed by
selecting the most common Czech (sub)tag value
in every case.

Baseline 2 is computed similarly to the evalu-
ation of projection validity presented in §3. For
each English word, the UniMorph subtag values
which can be obtained by translating the PTB tag
are compared to the projected subtag value in the
same category (e.g. TENSE). This baseline penal-
izes cases in which a value for a category exists in
the gold projection, but the value from the PTB tag
translation either does not match or is not present
at all. The poor performance of this baseline high-
lights how little information can be gleaned from
traditional English PTB tags themselves, which is
caused by the poverty of English inflectional mor-
phology. In baselines 2 and 3, values for negation
and voice were never present from the PTB tags
since both negation and passive voice are indicated
by separate words in English.5

5The tag VBN cannot be used in isolation to conclusively
find use of the passive voice since it may occur in construc-



source case tense per num neg grade voice all
Baseline 1 35.0 86.7 94.2 45.6 68.8 99.0 86.7 14.1
Baseline 2 0.7 61.5 29.3 46.0 — 62.6 — 4.3
Baseline 3 46.4 89.1 99.8 86.3 — 99.5 — 8.6
PCEDT 69.1 93.3 96.5 78.3 89.4 99.5 93.7 54.7

Table 4: Performance of the neural tagger on §22 of the WSJ
portion of the PTB. We report both subtag and whole tag ac-
curacies. Baseline 1 simply outputs the most frequent subtag
value. Baseline 2 outputs the subtag value that can be ob-
tained from a human-annotated PTB tag with the gold subtag,
and penalizes both values from the PTB tag that are either in-
correct or missing. Baseline 3 does the same comparison,
but penalizes only incorrect values, not those which are miss-
ing. Accuracy which exceeds or equals all baselines is bolded
while that which exceeds only baselines 1 and 2 is italicized.

In baseline 3, we remove the effect of morpho-
logical poverty from consideration by comparing
the values obtained from PTB tag translation to
gold projected values only when both sources pro-
vide a value for a given category. The strong per-
formance of this baseline, particularly in person
and number, may be partly due to the fact that the
tags are human-annotated as well as the fact that
fewer comparisons are made in an attempt to iso-
late the effects of morphological poverty. In addi-
tion, baseline 3 need only predict instances of 3rd
person, since person is only marked by PTB tags
for one tag, VBZ. Similarly, PTB tags only ex-
plicitly mark number for the tags VBZ, NN, NNS,
NNP, and NNPS.

The neural tagger outperforms baselines 1 and
2 everywhere, showing that the syntactic structure
of English does contain enough signal to recover
the complex semantic distinctions that are overt
in Czech morphology. For case, especially, accu-
racy is nearly double that of baseline 1. Table 3
shows an example English sentence, where case
and number have been tagged correctly. We ex-
amined the contribution of different grammatical
aspects of English by training standard MaxEnt
classifiers for each subtag using different subsets
of features. The individual classifiers were trained
with Liblinear’s (Fan et al., 2008) MaxEnt model.
We varied the regularization constant from 0.001
to 100 in multiples of 10, choosing the value in
each situation that maximized performance on the
dev set, PCEDT §00. Table 5 contains the re-
sults. First, word identity contributes more than
POS on its own. This suggests that the distribution
of morphological features is at least partially con-
ditioned by lexical factors, in addition to grammat-

tions such as ‘have given’ in which the VP as a whole is not
passive.

features case tense person num. neg. grade voice
POS 46.4 91.2 95.3 68.7 84.2 99.3 91.8
Word 56.2 91.5 95.5 72.4 85.9 99.4 91.9
Word, POS 58.6 92.1 95.9 74.4 88.3 99.4 92.6
Word, POS, POS ctxt 63.8 92.7 96.1 77.5 89.1 99.5 93.2
CFG 65.0 92.7 96.2 77.5 88.8 99.4 93.1
dep 67.0 92.9 96.3 77.9 89.3 99.5 93.2
dep, CFG 69.1 92.9 96.4 78.0 89.2 99.5 93.2
dep, CFG, lex. ctxt 69.0 93.2 96.6 79.1 89.8 99.5 93.7

Table 5: Performance of the PCEDT-trained MaxEnt clas-
sifiers on §22 of the WSJ portion of the Penn Treebank.
Bolding indicates the highest performance among the Max-
Ent classifiers.

ical properties such as POS. The addition of POS
context, which includes the POS of the preceding
and the following word, yields modest gains, ex-
cept for case, in which it leads to a 5.2% increase
in accuracy. POS context can be viewed as an ap-
proximation of true syntactic features, which yield
greater improvements. Dependency parse features
are particularly effective in helping to predict case
since case is typically assigned by a verb govern-
ing a noun in a head-dependency relationship. The
direct encoding of this relationship yields an espe-
cially salient feature for the case classifier. Even
with these improvements, the case feature remains
the most difficult to predict, suggesting that even
more salient features have yet to be discovered.

7 Conclusion

To our knowledge, this is the first work to con-
struct a rich morphological tagger for English that
does not rely on manually-developed syntactic
heuristics. This significantly extends the applica-
bility and usability of the proposed general tagging
framework, which offers the ability to use auto-
matic parsing features in one language and (poten-
tially automatically generated) morphological fea-
ture annotation in the other. Validating the claim
that languages apply different aspects of gram-
mar to represent equivalent meanings, we find that
English-only lexical, contextual, and syntactic fea-
tures derived from off-the-shelf parsing tools en-
code the complex semantic distinctions present in
Czech morphology. In addition to allowing this
scientific claim to be computationally validated,
we expect this approach to generalize to tagging
any morphologically poor language with the mor-
phological distinctions made in another morpho-
logically rich language.
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