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Abstract

The generation of complex derived word
forms has been an overlooked problem in
NLP; we fill this gap by applying neu-
ral sequence-to-sequence models to the
task. We overview the theoretical mo-
tivation for a paradigmatic treatment of
derivational morphology, and introduce the
task of derivational paradigm completion
as a parallel to inflectional paradigm com-
pletion. State-of-the-art neural models,
adapted from the inflection task, are able
to learn a range of derivation patterns, and
outperform a non-neural baseline by 16.4%.
However, due to semantic, historical, and
lexical considerations involved in deriva-
tional morphology, future work will be
needed to achieve performance parity with
inflection-generating systems.

1 Introduction

Unlike inflectional morphology, which produces
grammatical variants of the same core lexical item
(e.g., take7→takes), derivational morphology is one
of the key processes by which new lemmata are
created. For example, the English verb corrode can
evolve into the noun corrosion, the adjective corro-
dent, and numerous other complex derived forms
such as anticorrosive. Derivational morphology is
often highly productive, leading to the ready cre-
ation of neologisms such as Rao-Blackwellize and
Rao-Blackwellization, both originating from the
Rao-Blackwell theorem. Despite the prevalence
of productive derivational morphology, however,
there has been little work on its generation. Com-
monly used derivational resources such as Nom-
Bank (Meyers et al., 2004) are still finite. Moreover,
the complex phonological and historical changes
(e.g., the adjectivization corrode7→corrosive) and

affix selection (e.g., choosing between English de-
verbal suffixes -ment and -tion) make generation
of derived forms an interesting and challenging
problem for NLP.

In this work, we show that viewing derivational
morphological processes as paradigmatic may be
fruitful for generation. This means that there are
a number of well-defined form-function pairs as-
sociated with a core word. For example, a typical
English verb may have five forms in its inflectional
paradigm, corresponding to its base (take), past
tense (took), past participle (taken), progressive
(taking) and third-person singular (takes) forms.
These forms are related by a consistent set of re-
lations, such as affixation. Similarly, a verb may
have several slots in its derivational paradigm: The
form take has the agentive nominalization taker,
and the abilitative adjectivization takable. Note
there are also consistent patterns associated with
each derivational slot, e.g., the -er suffix regularly
produces the agentive.

Exploiting this paradigmatic characterization of
derivational morphology allows us to create a sta-
tistical model capable of generating derivationally
complex forms. We apply state-of-the-art models
for inflection generation, which learn mappings
from fixed paradigm slots to derived forms. Em-
pirically, we compare results for two models on
the new task of derivational paradigm completion:
a neural sequence-to-sequence model and a stan-
dard non-neural baseline. Our best neural model
for derivation achieves 71.7% accuracy, beating the
non-neural baseline by 16.4 points. Nevertheless,
we note this is about 25 points lower than the equiv-
alent model on the English inflection task (and even
20 points lower than the model’s performance on
the harder Finnish inflection generation). These re-
sults point to additional complications in derivation
that require more elaborate models or data anno-
tation to overcome. While inflection generation is



Semantics POS Affix

NEGATION J→J un-, in-, il-, ir-

ORIGIN N→J -an, -ian, -ish, -ese
RELATION N→J -ous, -ious, -eous
DIMINUTIVE N→N -ette

REPEAT V→V re-
PATIENT V→N -ee
RESULT V→N -ment, -ion, -tion, -tion, -al, -ure
AGENT V→N -er, -or, -ant, -ee
POTENTIAL V→J -able,-abil, ible

Table 1: A partial list of derivational transformations in En-
glish with corresponding POS changes and semantic labels.

becoming a solved problem (Cotterell et al., 2017),
derivation generation is still very much open.

2 Derivational Morphology

The generation of derived forms is structurally sim-
ilar to the generation of inflectional variants, but
presents additional challenges for NLP. Here, we
provide linguistic background comparing the two
types of morphological processes.

Inflection and Derivation. Inflectional morphol-
ogy primarily marks semantic features that are nec-
essary for syntax, e.g., gender, tense and aspect.
Thus, it follows that in most languages inflection
never changes the part of speech of the word and
often does not change its basic meaning. The set of
inflectional forms for a given lexeme is said to form
a paradigm, e.g., the full paradigm for the verb to
take is 〈take, taking, takes, took, taken〉. Each entry
in an inflectional paradigm is termed a slot and is
indexed by a syntacto-semantic category, e.g., the
PAST form of take is took. We may reasonably ex-
pect that all English verbs—including neologisms—
have these five forms.1 Furthermore, there is
typically a fairly regular relationship between a
paradigm slot and its form (e.g., add -s for the third
person singular form). Derivational morphology,
on the other hand, often changes the core part of
speech of a word and makes more radical changes
in meaning. In fact, derivational processes are often
subcategorized by the part-of-speech change they
engender, e.g., corrode7→corrosion is a deverbal
nominalization.

Derivational Paradigms. Much like inflection,
derivational processes may be organized into

1Only a handful of English irregulars distinguish between
the past tense and the past participle, e.g., took and taken, and
thus have five unique forms in their verbal paradigms; most
English verbs have four unique forms.

paradigms, with slots corresponding to more ab-
stract lexico-semantic categories for an associ-
ated part of speech (Corbin, 1987; Booij, 2008;
Štekauer, 2014). Lieber (2004) presents one of
the first theoretical frameworks to enumerate a set
of derivational paradigm slots, motivated by previ-
ous studies of semantic primitives by Wierzbicka
(1988). A partial listing of possible derivational
paradigm slots for base English adjectives, nouns,
and verbs is given in Table 1. The list contains
several productive cases. A key difficulty comes
from the the fact that the mapping between seman-
tics and suffixes is not always clean; Lieber (2004)
points out the category AGENT could be expressed
by the suffix -er (as in runner) or by -ee (as in es-
capee). However, both -er and -ee may have the
PATIENT role; consider burner (“a cheap phone
intended to be disposed of, i.e. burned”) and em-
ployee (“one being employed”), respectively. We
flesh out partial derivational paradigms for several
English verbs in Table 2.

Unlike in inflectional paradigms, where we ex-
pect most cells to be filled for any given base
form, derivational paradigms often contain base-
slot combinations that are not semantically compat-
ible, leading to the gaps in Table 2.2 We also ob-
serve increased paradigm irregularity due to some
derived forms becoming lexicalized at different
points in history, differences in the language from
which the base word entered the target language
(e.g., English roots of Germanic and Latinate ori-
gin behave differently (Bauer, 1983)), as well as
other factors that are not obvious from the charac-
ters in the base word (e.g., gender or number of the
resulting noun).

As an example of how difficult these factors can
make derivation, consider the wide variety of poten-
tial nominalizations corresponding to the RESULT

of a verb, e.g., -ion, -al and -ment, (Jackendoff,
1975). While any particular English verb will al-
most exclusively employ exactly one of these suf-
fixes (e.g., we have refuse 7→refusal and other can-
didates ∗refusion and ∗refusement are illicit),3 the
information required to choose the correct suffix
may be both arbitrary or not easily available.

2For instance, if suffix -ee marks a PATIENT it is seman-
tically not compatible with intransitive verbs, i.e., ∗sneezee
cannot be derived from intransitive sneeze.

3Note some forms appear to have multiple nominalizations,
e.g., deport7→{deportation,deportment}, but closer inspection
shows there is one regular semantic transformation per word
sense: deportation is eviction, but deportment is behavior.



Base -er/-or -ee -ment/-tion -able/-ible
POS V 7→N V7→N V7→N V7→J
Semantic AGENT PATIENT RESULT POTENTIAL

animate animator — animation animatable
attract attractor attractee attraction attractable
— aggressor aggressee aggression —
employ employer employee employment employable
place placer — placement placeable
repel repeller repelee repellence repellable
escape escapee — — escapable
corrode corroder — corrosion corrosible
derive deriver derivee derivation derivable

Table 2: Partial derivational paradigm for several English verbs; semantic gaps are indicated with —.

Productivity. There is a general agreement in
linguistics that frequently used complex words be-
come part of the lexicon as wholes, while most oth-
ers are likely to be constructed from constituents
(Bauer, 2001; Aronoff and Lindsay, 2014); the lat-
ter ones typically follow derivational patterns, or
rules, such as adding -able to express potential or
ability or applying -ly to convert adjectives into
adverbs. These patterns typically present two es-
sential properties: productivity and restrictedness.
Productivity relates to the ability of a pattern to
be applied to any novel base form to create a new
word, potentially on-the-fly. One example of such
a productive transformation is adding -less (priva-
tive construction), which may attach to almost any
noun to form an adjective. Moreover, the resulting
form’s meaning is compositional and predictable.
Many derivational suffixes in English are of this
type. On the other hand, some patterns are subject
to semantic, pragmatic, morphological or phono-
logical restrictions. Consider the English patient
suffix -ee, which cannot be attached to a base end-
ing in /i(:)/, e.g., it cannot be attached to the verb
free to form freeee. Restrictedness is closely related
to productivity, i.e., highly productive rules are less
restricted. A parsimonious model of derivational
morphology would describe forms using produc-
tive rules when possible, but may store forms with
highly restricted patterns directly as full lexical
items.

A Note On Terminology. We would like to
make a subtle, but important point regarding ter-
minology: the phrase morphologically rich in the
NLP community almost exclusively refers to inflec-
tional, rather than derivational morphology. For
example, English is labeled as morphologically

impoverished, whereas German and Russian are
considered morphologically rich, e.g., see the in-
troduction of Tsarfaty et al. (2010). As regards
derivation, English is quite complex and even simi-
lar in richness to German or Russian as it contains
productive formations from two substrata: Ger-
manic and Latinate. From this perspective, English
is very much a morphologically rich language. In-
deed, a corpus study on the Brown Corpus showed
that the majority of English words are morphologi-
cally complex when derivation is considered (Light,
1996). Note that there many languages that have
exhibit neither rich inflection, nor rich derivational
morphology, e.g., Chinese, which most commonly
employs compounding for word word formation
(Chung et al., 2014).

3 Task and Models

We discuss our two systems for derivational
paradigm completion and the results they achieve.

3.1 Data

We experiment on English derivational triples ex-
tracted from NomBank (Meyers et al., 2004).4

Each triple consists of a base form, the semantics
of the derivation and a corresponding derived form
e.g., 〈ameliorate, RESULT, amelioration〉. Note
that in this task we do not predict whether a slot ex-
ists, merely what form it would take given the base
and the slot. In terms of current study, we consider
the following derivational types: verb nominaliza-
tion such as RESULT, AGENT and PATIENT, ad-
verbalization and adjective-noun transformations.
We intentionally avoid zero-derivations. We also

4There are few resources annotated for derivation in non-
English languages, making wider experimentation difficult.



1-best 10-best
baseline seq2seq seq2seq

acc edit acc edit acc

all 55.3% 2.01 71.7% 0.97 84.5%

NOMINAL (J7→N) 23.1% 3.45 35.1% 2.67 70.2%
RESULT (V7→N) 40.0% 2.24 52.9% 1.86 72.6%
AGENT (V7→N) 52.2% 0.94 65.6% 0.78 82.2%
ADVERB (J7→R) 90.0% 0.21 93.3% 0.18 96.5%

Table 3: Results under two metrics (accuracy and Levenshtein
distance) comparing the non-neural baseline from the 201 SIG-
MORPHON shared task and the neural sequence-to-sequence
model (both for 1-best and 10-best output).

exclude overly orthographically distant pairs by fil-
tering out those for which the Levenshtein distance
exceeds half the sum of their lengths, which ap-
pear to be misannotations in NomBank. The final
dataset includes 6,029 derivational samples, which
we split into train (70%), development (15%), and
test (15%).5 We also note that NomBank annota-
tions are often semantically more coarse-grained.

3.2 Evaluation Metrics

We evaluate on 3 metrics: accuracy, average edit
distance, and F1. Accuracy measures how often
system output exactly matches the gold string. Edit
distance, by comparison, measures the Levenshtein
distance between system output and the gold string.
Finally, we calculate affix F1 scores for individual
derivational affixes. E.g., for -ment precision is
the number of words where the model correctly
predicted -ment (out of total predictions) and recall
is the number of words where the model correctly
predicted out of the number of true words.

3.3 Baseline Transducer

We train a simple transducer for each base-to-
paradigm slot mapping in the training set, identical
to the baseline described in Cotterell et al. (2016).
This uses an averaged perceptron classifier to greed-
ily apply an output transformation (substitution,
deletion, or insertion) to each input character given
the surrounding characters and previous decisions.

3.4 RNN Encoder-Decoder

Following Kann and Schütze (2016) on the morpho-
logical inflection task, we use an encoder-decoder
gated recurrent neural network (Bahdanau et al.,
2015). First, an encoder network encodes a se-
quence: the concatenation of the characters of

5The dataset is available at http://github.com/
ryancotterell/derviational-paradigms.

the input word and a tag describing the desired
transformation—both represented by embeddings.
This encoder is bidirectional and consists of two
gated RNNs (Cho et al., 2014), one encoding the in-
put in the forward direction, the other one encoding
in the backward direction. The output of the two
RNNs is the resulting hidden vectors

−→
hi and

←−
hi .

The hidden state is a concatenation of the forward
and backward hidden vectors, i.e., hi = [

−→
hi
←−
hi ].

The decoder also consists of an RNN, but is ad-
ditionally equipped with an attention mechanism.
The latter computes a weight for each of the en-
coder hidden vectors for each character or subtag,
which can be roughly understood as giving a certain
importance to each of the inputs. The probability
of the target sequence y = (y1, . . . , y|y|) given the
input sequence x = (x1, . . . , x|x|) is modeled by

p(y | x1, . . . , x|x|) =
|y|∏
t=1

p(yt | {y1, . . . , yt−1}, ct)

=

|y|∏
t=1

g(yt−1, st, ct), (1)

where g is a multi-layer perceptron, st is the hidden
state of the decoder and ct is the sum of the encoder
states hi, scored by attention weights αi(st−1) that
depend on the decoder state: ct =

∑
i αi(st−1)hi.

Input Encoding. We model this problem as a
character translation problem, with special encod-
ings for the transformation tags that indicate the
type of derivation. For example, we treat the triple:
〈ameliorate, RESULT, amelioration〉 as the source
string a m e l i o r a t e RESULT and target
string a m e l i o r a t i o n. This is similar
to the encoding in Kann and Schütze (2016).

Training. We use the Nematus toolkit (Sennrich
et al., 2017).6 We exactly follow the recipe in Kann
and Schütze (2016), the winning submission on the
2016 SIGMORPHON shared task for inflectional
morphology. Accordingly, we use a character em-
bedding size of 300, 100 hidden units in both the
encoder and decoder, Adadelta (Zeiler, 2012) with
a minibatch size of 20, and a beam size of 12. We
train for 300 epochs and select the test model based
on the performance on the development set.

4 Experimental Results

Table 3 compares the accuracy of our baseline sys-
tem with the accuracy of our sequence-to-sequence

6https://github.com/rsennrich/nematus/

http://github.com/ryancotterell/derviational-paradigms
http://github.com/ryancotterell/derviational-paradigms
https://github.com/rsennrich/nematus/


neural network using the data splits discussed in
§3.1. In all cases, the network outperforms the
baseline. While 1-best performance is not nearly
as high as that expected from a state-of-the-art in-
flectional generation system, the key point is that
performance significantly increases when consider-
ing the 10-best outputs. This suggests that the net-
work is indeed learning the correct set of possible
nominalization patterns. However, the information
needed to correctly choose among these patterns
for a given input is not necessarily available to the
network. In particular, the network is only aware of
important disambiguating historical (e.g., is the in-
put of Latin or Greek origin) and lexical-semantic
(e.g., is the input verb transitive or intransitive) fac-
tors to the extent that they are implicitly encoded
in the input character sequence. We speculate that
making these additional pieces of information di-
rectly available as input features will significantly
improve 1-best accuracy.

Unfortunately, NomBank does not provide the
necessary annotations in most cases. For instance,
there is no way to differentiate actor and actress
without gender. It also does not distinguish the
semantics of some adjective nominalizations, e.g.,
activism and activity. Future work will reannotate
NomBank to make these finer-grained distinctions.

Error Analysis. We observe mistakes on less fre-
quent suffixes, e.g., -age—we predict ∗draination
instead of drainage. Also, there are several cases
where NomBank only lists one available form, e.g.,
complexity, and our model predicts complexness.
We also see mistakes on irregular adverbs, e.g., we
generate advancely from advance, rather than in-
advance, as well as in PATIENT nominalizations,
e.g., the model produces containee in place of
content—this last distinction is unpredictable.

5 Related Work

Previous work in unsupervised morphological seg-
mentation and has implicitly incorporated deriva-
tional morphology. Such systems attempt to seg-
ment words into all constituent morphs, treating
inflectional and derivational affixes as equivalent.
The popular Morfessor tool (Creutz and Lagus,
2007) is one example of such an unsupervised seg-
mentation system, but many others exist, e.g., Poon
et al. (2009), Narasimhan et al. (2015) inter alia.
Supervised segmentation and analysis models in
the literature can also break down derivationally
complex forms into their morphs, provided pre-

affix F1 affix F1 affix F1

-ly 1.0 -ity 0.54 -ence 0.32
-er 0.86 -ment 0.45 -ure 0.22
-ation 0.78 -ist 0.43 -ee 0.20
-or 0.59 -ness 0.40 -age 0.20

Table 4: F1 for various suffix attachments with the sequence-
to-sequence model

segmented and labeled data is available for training
(Ruokolainen et al., 2013; Cotterell et al., 2015;
Cotterell and Schütze, 2017). Our work, however,
builds directly upon recent efforts in the generation
of inflectional morphology (Durrett and DeNero,
2013; Nicolai et al., 2015; Ahlberg et al., 2015;
Rastogi et al., 2016; Faruqui et al., 2016). We dif-
fer in that we focus on derivational morphology. In
another recent line of work, Vylomova et al. (2017)
predict derivationally complex forms using senten-
tial context. Our work differs from their approach
in that we attempt to generate derivational forms di-
vorced from the context, but the underlying neural
sequence-to-sequence architecture is quite similar.

6 Conclusion

We have presented a statistical model for the gen-
eration of derivationally complex forms, a task
that has gone essentially unexplored in the litera-
ture. Viewing derivational morphology as paradig-
matic, where slots refer to semantic categories, e.g.,
corrode+RESULT 7→corrosion, we draw upon re-
cent advances in the generation of inflectional mor-
phology. Applying this method works well, achiev-
ing an overall accuracy of 71.71%, and beating
a non-neural baseline. Performance, however, is
lower than on the task of paradigm completion for
inflectional morphology, indicating that paradigm
completion for derivational morphology is more
challenging than its inflectional counterpart.

Acknowledgements

The authors would like to thank Jason Eisner and
Colin Wilson for helpful discussions about deriva-
tion. The first author acknowledges funding from
an NDSEG graduate fellowship. This material is
based upon work supported in part by the Defense
Advanced Research Projects Agency (DARPA) un-
der Contract No. HR0011-15-C-0113. Any opin-
ions, findings and conclusions or recommendations
expressed in this material are those of the authors
and do not necessarily reflect the views of DARPA.



References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2015. Paradigm classification in supervised learn-
ing of morphology. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL), pages 1024–1029,
Denver, Colorado. Association for Computational
Linguistics.

Mark Aronoff and Mark Lindsay. 2014. Productivity,
blocking and lexicalization. The Oxford Handbook
of Derivational Morphology, pages 67–83.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations (ICLR).

Laurie Bauer. 1983. English Word-formation. Cam-
bridge University Press.

Laurie Bauer. 2001. Morphological Productivity, vol-
ume 95. Cambridge University Press.

Geert Booij. 2008. Paradigmatic morphology. La
Raison Morphologique. Hommage à la Mémoire de
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